Two-photon high-speed fluorescence calcium imaging stands as a mainstream technique in neuroscience for capturing neural activities with high spatiotemporal resolution. However, challenges arise from the inherent tradeoff between acquisition speed an...
OBJECTIVE: To develop and compare various preoperative cervical stromal invasion (CSI) prediction models, including radiomics, three-dimensional (3D) deep transfer learning (DTL), and integrated models, using single-sequence and multiparametric MRI.
AIM: We sought to assess the image quality of three-dimensional (3D) T2-weighted (T2w) turbo spin echo (TSE) sequences with deep learning (DL)-constrained compressed sensing (CS) reconstruction relative to a reference two-dimensional (2D) T2w TSE seq...
In the field of spinal pathology, sagittal balance of the spine is usually judged by the spatial structure and morphology of pelvis, which can be represented by pelvic parameters. Pelvic parameters, including pelvic incidence, pelvic tilt and sacral ...
Journal of imaging informatics in medicine
Sep 12, 2024
This study aimed to develop a graph neural network (GNN) for automated three-dimensional (3D) magnetic resonance imaging (MRI) visualization and Pfirrmann grading of intervertebral discs (IVDs), and benchmark it against manual classifications. Lumbar...
International journal of computer assisted radiology and surgery
Sep 12, 2024
PURPOSE: Accurate segmentation of tubular structures is crucial for clinical diagnosis and treatment but is challenging due to their complex branching structures and volume imbalance. The purpose of this study is to propose a 3D deep learning network...
Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
Sep 11, 2024
BACKGROUND: Deep learning is the state-of-the-art approach for automated segmentation of the left ventricle (LV) and right ventricle (RV) in cardiovascular magnetic resonance (CMR) images. However, these models have been mostly trained and validated ...
Recent developments in Deep Learning have opened the possibility for automated segmentation of large and highly detailed CT scan datasets of fossil material. However, previous methodologies have required large amounts of training data to reliably ext...
OBJECTIVES: In orthognatic surgery, one of the primary determinants for reliable three-dimensional virtual surgery planning (3D VSP) and an accurate transfer of 3D VSP to the patient in the operation room is the condylar seating. Incorrectly seated c...