AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Imaging, Three-Dimensional

Showing 231 to 240 of 1613 articles

Clear Filters

TAG-SPARK: Empowering High-Speed Volumetric Imaging With Deep Learning and Spatial Redundancy.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Two-photon high-speed fluorescence calcium imaging stands as a mainstream technique in neuroscience for capturing neural activities with high spatiotemporal resolution. However, challenges arise from the inherent tradeoff between acquisition speed an...

Deep learning constrained compressed sensing reconstruction improves high-resolution three-dimensional (3D) T2-weighted turbo spin echo magnetic resonance imaging (MRI) of the lumbar spine.

Clinical radiology
AIM: We sought to assess the image quality of three-dimensional (3D) T2-weighted (T2w) turbo spin echo (TSE) sequences with deep learning (DL)-constrained compressed sensing (CS) reconstruction relative to a reference two-dimensional (2D) T2w TSE seq...

Automatic 3D pelvimetry framework in CT images and its validation.

Scientific reports
In the field of spinal pathology, sagittal balance of the spine is usually judged by the spatial structure and morphology of pelvis, which can be represented by pelvic parameters. Pelvic parameters, including pelvic incidence, pelvic tilt and sacral ...

Automated Three-Dimensional Imaging and Pfirrmann Classification of Intervertebral Disc Using a Graphical Neural Network in Sagittal Magnetic Resonance Imaging of the Lumbar Spine.

Journal of imaging informatics in medicine
This study aimed to develop a graph neural network (GNN) for automated three-dimensional (3D) magnetic resonance imaging (MRI) visualization and Pfirrmann grading of intervertebral discs (IVDs), and benchmark it against manual classifications. Lumbar...

Skeleton-guided 3D convolutional neural network for tubular structure segmentation.

International journal of computer assisted radiology and surgery
PURPOSE: Accurate segmentation of tubular structures is crucial for clinical diagnosis and treatment but is challenging due to their complex branching structures and volume imbalance. The purpose of this study is to propose a 3D deep learning network...

Automated biventricular quantification in patients with repaired tetralogy of Fallot using a three-dimensional deep learning segmentation model.

Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
BACKGROUND: Deep learning is the state-of-the-art approach for automated segmentation of the left ventricle (LV) and right ventricle (RV) in cardiovascular magnetic resonance (CMR) images. However, these models have been mostly trained and validated ...

PelviNet: A Collaborative Multi-agent Convolutional Network for Enhanced Pelvic Image Registration.

Journal of imaging informatics in medicine
PelviNet introduces a groundbreaking multi-agent convolutional network architecture tailored for enhancing pelvic image registration. This innovative framework leverages shared convolutional layers, enabling synchronized learning among agents and ens...

Accelerating segmentation of fossil CT scans through Deep Learning.

Scientific reports
Recent developments in Deep Learning have opened the possibility for automated segmentation of large and highly detailed CT scan datasets of fossil material. However, previous methodologies have required large amounts of training data to reliably ext...

Automated condylar seating assessment using a deep learning-based three-step approach.

Clinical oral investigations
OBJECTIVES: In orthognatic surgery, one of the primary determinants for reliable three-dimensional virtual surgery planning (3D VSP) and an accurate transfer of 3D VSP to the patient in the operation room is the condylar seating. Incorrectly seated c...