AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Imaging, Three-Dimensional

Showing 241 to 250 of 1613 articles

Clear Filters

FPL+: Filtered Pseudo Label-Based Unsupervised Cross-Modality Adaptation for 3D Medical Image Segmentation.

IEEE transactions on medical imaging
Adapting a medical image segmentation model to a new domain is important for improving its cross-domain transferability, and due to the expensive annotation process, Unsupervised Domain Adaptation (UDA) is appealing where only unlabeled images are ne...

Automated classification of mandibular canal in relation to third molar using CBCT images.

F1000Research
BACKGROUND: Dental radiology has significantly benefited from cone-beam computed tomography (CBCT) because of its compact size and low radiation exposure. Canal tracking is an important application of CBCT for determining the relationship between the...

Validity and Reliability of OpenPose-Based Motion Analysis in Measuring Knee Valgus during Drop Vertical Jump Test.

Journal of sports science & medicine
OpenPose-based motion analysis (OpenPose-MA), utilizing deep learning methods, has emerged as a compelling technique for estimating human motion. It addresses the drawbacks associated with conventional three-dimensional motion analysis (3D-MA) and hu...

An unsupervised learning model based on CT radiomics features accurately predicts axillary lymph node metastasis in breast cancer patients: diagnostic study.

International journal of surgery (London, England)
BACKGROUND: The accuracy of traditional clinical methods for assessing the metastatic status of axillary lymph nodes (ALNs) is unsatisfactory. In this study, the authors propose the use of radiomic technology and three-dimensional (3D) visualization ...

Deep learning for efficient reconstruction of highly accelerated 3D FLAIR MRI in neurological deficits.

Magma (New York, N.Y.)
OBJECTIVE: To compare compressed sensing (CS) and the Cascades of Independently Recurrent Inference Machines (CIRIM) with respect to image quality and reconstruction times when 12-fold accelerated scans of patients with neurological deficits are reco...

Cross-view discrepancy-dependency network for volumetric medical image segmentation.

Medical image analysis
The limited data poses a crucial challenge for deep learning-based volumetric medical image segmentation, and many methods have tried to represent the volume by its subvolumes (i.e., multi-view slices) for alleviating this issue. However, such method...

Deep-learning-based method for the segmentation of ureter and renal pelvis on non-enhanced CT scans.

Scientific reports
This study aimed to develop a deep-learning (DL) based method for three-dimensional (3D) segmentation of the upper urinary tract (UUT), including ureter and renal pelvis, on non-enhanced computed tomography (NECT) scans. A total of 150 NECT scans wit...

Deep Learning-Enhanced Accelerated 2D TSE and 3D Superresolution Dixon TSE for Rapid Comprehensive Knee Joint Assessment.

Investigative radiology
OBJECTIVES: The aim of this study was to evaluate the use of a multicontrast deep learning (DL)-reconstructed 4-fold accelerated 2-dimensional (2D) turbo spin echo (TSE) protocol and the feasibility of 3-dimensional (3D) superresolution reconstructio...

A comparison of machine learning methods for recovering noisy and missing 4D flow MRI data.

International journal for numerical methods in biomedical engineering
Experimental blood flow measurement techniques are invaluable for a better understanding of cardiovascular disease formation, progression, and treatment. One of the emerging methods is time-resolved three-dimensional phase-contrast magnetic resonance...

Neural shape completion for personalized Maxillofacial surgery.

Scientific reports
In this paper, we investigate the effectiveness of shape completion neural networks as clinical aids in maxillofacial surgery planning. We present a pipeline to apply shape completion networks to automatically reconstruct complete eumorphic 3D meshes...