AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Aorta

Showing 1 to 10 of 71 articles

Clear Filters

SeqSeg: Learning Local Segments for Automatic Vascular Model Construction.

Annals of biomedical engineering
Computational modeling of cardiovascular function has become a critical part of diagnosing, treating and understanding cardiovascular disease. Most strategies involve constructing anatomically accurate computer models of cardiovascular structures, wh...

CIS-UNet: Multi-class segmentation of the aorta in computed tomography angiography via context-aware shifted window self-attention.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Advancements in medical imaging and endovascular grafting have facilitated minimally invasive treatments for aortic diseases. Accurate 3D segmentation of the aorta and its branches is crucial for interventions, as inaccurate segmentation can lead to ...

Feasibility of Ultra-low Radiation and Contrast Medium Dosage in Aortic CTA Using Deep Learning Reconstruction at 60 kVp: An Image Quality Assessment.

Academic radiology
OBJECTIVE: To assess the viability of using ultra-low radiation and contrast medium (CM) dosage in aortic computed tomography angiography (CTA) through the application of low tube voltage (60kVp) and a novel deep learning image reconstruction algorit...

Development of a Self-Deploying Extra-Aortic Compression Device for Medium-Term Hemodynamic Stabilization: A Feasibility Study.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Hemodynamic stabilization is crucial in managing acute cardiac events, where compromised blood flow can lead to severe complications and increased mortality. Conditions like decompensated heart failure (HF) and cardiogenic shock require rapid and eff...

Pinning down the accuracy of physics-informed neural networks under laminar and turbulent-like aortic blood flow conditions.

Computers in biology and medicine
BACKGROUND: Physics-informed neural networks (PINNs) are increasingly being used to model cardiovascular blood flow. The accuracy of PINNs is dependent on flow complexity and could deteriorate in the presence of highly-dynamical blood flow conditions...

Estimation of Central Aortic Pressure Waveforms by Combination of a Meta-Learning Neural Network and a Physics-Driven Method.

International journal for numerical methods in biomedical engineering
The accurate non-invasive detection and estimation of central aortic pressure waveforms (CAPW) are crucial for reliable treatments of cardiovascular system diseases. But the accuracy and practicality of current estimation methods need to be improved....

A machine learning algorithm for creating isotropic 3D aortic segmentations from routine cardiac MR localizers.

Magnetic resonance imaging
BACKGROUND: The identification and measurement of aortic aneurysms is an important clinical problem. While specialized high-resolution 3D CMR sequences allow detailed aortic assessment, they are time-consuming which limits their use in screening rout...

A spectral machine learning approach to derive central aortic pressure waveforms from a brachial cuff.

Proceedings of the National Academy of Sciences of the United States of America
Analyzing cardiac pulse waveforms offers valuable insights into heart health and cardiovascular disease risk, although obtaining the more informative measurements from the central aorta remains challenging due to their invasive nature and limited non...

Association Between Aortic Imaging Features and Impaired Glucose Metabolism: A Deep Learning Population Phenotyping Approach.

Academic radiology
RATIONALE AND OBJECTIVES: Type 2 diabetes is a known risk factor for vascular disease with an impact on the aorta. The aim of this study was to develop a deep learning framework for quantification of aortic phenotypes from magnetic resonance imaging ...

Towards fast and reliable estimations of 3D pressure, velocity and wall shear stress in aortic blood flow: CFD-based machine learning approach.

Computers in biology and medicine
In this work, we developed deep neural networks for the fast and comprehensive estimation of the most salient features of aortic blood flow. These features include velocity magnitude and direction, 3D pressure, and wall shear stress. Starting from 40...