AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Infant, Newborn

Showing 131 to 140 of 704 articles

Clear Filters

Combining artificial intelligence and conventional statistics to predict bronchopulmonary dysplasia in very preterm infants using routinely collected clinical variables.

Pediatric pulmonology
BACKGROUND: Prematurity is the strongest predictor of bronchopulmonary dysplasia (BPD). Most previous studies investigated additional risk factors by conventional statistics, while the few studies applying artificial intelligence, and specifically ma...

Distinguishing neonatal culture-negative sepsis from rule-out sepsis with artificial intelligence-derived graphs.

Pediatric research
Novel artificial intelligence methods can aide in identification of cases of conditions using only unstructured electronic health record data. This graph-based method compares comprehensive electronic health records among neonates using temporal data...

Morphological Rule-Constrained Object Detection of Key Structures in Infant Fundus Image.

IEEE/ACM transactions on computational biology and bioinformatics
The detection of optic disc and macula is an essential step for ROP (Retinopathy of prematurity) zone segmentation and disease diagnosis. This paper aims to enhance deep learning-based object detection with domain-specific morphological rules. Based ...

Free access via computational cloud to deep learning-based EEG assessment in neonatal hypoxic-ischemic encephalopathy: revolutionary opportunities to overcome health disparities.

Pediatric research
In this issue of Pediatric Research, Kota et al. evaluate a novel monitoring visual trend using deep-learning - Brain State of the Newborn (BSN)- based EEG as a bedside marker for severity of the encephalopathy in 46 neonates with hypoxic-ischemic en...

Prediction models for retinopathy of prematurity occurrence based on artificial neural network.

BMC ophthalmology
INTRODUCTION: Early prediction and timely treatment are essential for minimizing the risk of visual loss or blindness of retinopathy of prematurity, emphasizing the importance of ROP screening in clinical routine.

Bimodal machine learning model for unstable hips in infants: integration of radiographic images with automatically-generated clinical measurements.

Scientific reports
Bimodal convolutional neural networks (CNNs) are frequently combined with patient information or several medical images to enhance the diagnostic performance. However, the technologies that integrate automatically generated clinical measurements with...

Predictive modeling and socioeconomic determinants of diarrhea in children under five in the Amhara Region, Ethiopia.

Frontiers in public health
BACKGROUND: Diarrheal disease, characterized by high morbidity and mortality rates, continues to be a serious public health concern, especially in developing nations such as Ethiopia. The significant burden it imposes on these countries underscores t...

Evaluation of Comfort Behavior Levels of Newborn by Artificial Intelligence Techniques.

The Journal of perinatal & neonatal nursing
BACKGROUND: One of the scales most frequently used in the evaluation of newborn comfort levels is the Neonatal Comfort Behavior Scale (NCBS). It is important therefore that an increased use of the NCBS is encouraged through a more practical method of...

Exploring Machine Learning Algorithms to Predict Diarrhea Disease and Identify its Determinants among Under-Five Years Children in East Africa.

Journal of epidemiology and global health
BACKGROUND: The second most common cause of death for children under five is diarrhea. Early Predicting diarrhea disease and identify its determinants (factors) using an advanced machine learning model is the most effective way to save the lives of c...

Predicting adverse birth outcome among childbearing women in Sub-Saharan Africa: employing innovative machine learning techniques.

BMC public health
BACKGROUND: Adverse birth outcomes, including preterm birth, low birth weight, and stillbirth, remain a major global health challenge, particularly in developing regions. Understanding the possible risk factors is crucial for designing effective inte...