AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Infant, Newborn

Showing 61 to 70 of 704 articles

Clear Filters

Utilizing machine learning to predict hospital admissions for pediatric COVID-19 patients (PrepCOVID-Machine).

Scientific reports
The COVID-19 pandemic has burdened healthcare systems globally. To curb high hospital admission rates, only patients with genuine medical needs are admitted. However, machine learning (ML) models to predict COVID-19 hospitalization in Asian children ...

Convolutional neural network (CNN) configuration using a learning automaton model for neonatal brain image segmentation.

PloS one
CNN is considered an efficient tool in brain image segmentation. However, neonatal brain images require specific methods due to their nature and structural differences from adult brain images. Hence, it is necessary to determine the optimal structure...

A machine learning based variable selection algorithm for binary classification of perinatal mortality.

PloS one
The identification of significant predictors with higher model performance is the key objective in classification domain. A machine learning-based variable selection technique termed as CARS-Logistic model is proposed by coupling competitive adaptive...

Enhancing Small-for-Gestational-Age Prediction: Multi-Country Validation of Nuchal Thickness, Estimated Fetal Weight, and Machine Learning Models.

Prenatal diagnosis
OBJECTIVE: The first objective is to develop a nuchal thickness reference chart. The second objective is to compare rule-based algorithms and machine learning models in predicting small-for-gestational-age infants.

Precision fetal cardiology detects cyanotic congenital heart disease using maternal saliva metabolome and artificial intelligence.

Scientific reports
Prenatal sonographic diagnosis of congenital heart disease (CHD) can lead to improved morbidity and mortality. However, the diagnostic accuracy of ultrasound, the sole prenatal screening tool, remains limited. Failed prenatal or early newborn detecti...

New Directions for Ophthalmic OCT - Handhelds, Surgery, and Robotics.

Translational vision science & technology
The introduction of optical coherence tomography (OCT) in the 1990s revolutionized diagnostic ophthalmic imaging. Initially, OCT's role was primarily in the adult ambulatory ophthalmic clinics. Subsequent advances in handheld form factors, integratio...

Using supervised machine learning and ICD10 to identify non-accidental trauma in pediatric trauma patients in the Maryland Health Services Cost Review Commission dataset.

Child abuse & neglect
BACKGROUND: Identifying non-accidental trauma (NAT) in pediatric trauma patients is challenging. We developed a machine learning model that uses demographic characteristics and ICD10 codes to detect the first diagnosis of NAT.

A machine learning model accurately identifies glycogen storage disease Ia patients based on plasma acylcarnitine profiles.

Orphanet journal of rare diseases
BACKGROUND: Glycogen storage disease (GSD) Ia is an ultra-rare inherited disorder of carbohydrate metabolism. Patients often present in the first months of life with fasting hypoketotic hypoglycemia and hepatomegaly. The diagnosis of GSD Ia relies on...

Predicting early cessation of exclusive breastfeeding using machine learning techniques.

PloS one
BACKGROUND: Identification of mother-infant pairs predisposed to early cessation of exclusive breastfeeding is important for delivering targeted support. Machine learning techniques enable development of transparent prediction models that enhance cli...