AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Insulin

Showing 11 to 20 of 104 articles

Clear Filters

The association of serum irisin with anthropometric, metabolic, and bone parameters in obese children and adolescents.

Frontiers in endocrinology
BACKGROUND: Irisin is an adipomyokine secreted by muscle and adipose cells, and it plays a role in glucose, fat, and bone metabolism. This study aimed to determine the correlation of serum irisin levels with anthropometric, metabolic, and bone parame...

Prediction of Hypoglycemia From Continuous Glucose Monitoring in Insulin-Treated Patients With Type 2 Diabetes Using Transfer Learning on Type 1 Diabetes Data: A Deep Transfer Learning Approach.

Journal of diabetes science and technology
BACKGROUND: Hypoglycemia is common in insulin-treated type 2 diabetes (T2D) patients, which can lead to decreased quality of life or premature death. Deep learning models offer promise of accurate predictions, but data scarcity poses a challenge. Thi...

Application of machine learning in affordable and accessible insulin management for type 1 and 2 diabetes: A comprehensive review.

Artificial intelligence in medicine
Proper insulin management is vital for maintaining stable blood sugar levels and preventing complications associated with diabetes. However, the soaring costs of insulin present significant challenges to ensuring affordable management. This paper con...

A Scalable Application of Artificial Intelligence-Driven Insulin Titration Program to Transform Type 2 Diabetes Management.

Diabetes technology & therapeutics
Despite new pharmacotherapy, most patients with long-term type 2 diabetes are still hyperglycemic. This could have been solved by insulin with its unlimited potential efficacy, but its dynamic physiology demands frequent titrations which are overdem...

Which surrogate insulin resistance indices best predict coronary artery disease? A machine learning approach.

Cardiovascular diabetology
BACKGROUND: Various surrogate markers of insulin resistance have been developed, capable of predicting coronary artery disease (CAD) without the need to detect serum insulin. For accurate prediction, they depend only on glucose and lipid profiles, as...

Neural-Net Artificial Pancreas: A Randomized Crossover Trial of a First-in-Class Automated Insulin Delivery Algorithm.

Diabetes technology & therapeutics
Automated insulin delivery (AID) is now integral to the clinical practice of type 1 diabetes (T1D). The objective of this pilot-feasibility study was to introduce a new regulatory and clinical paradigm-a Neural-Net Artificial Pancreas (NAP)-an encod...

An automatic deep reinforcement learning bolus calculator for automated insulin delivery systems.

Scientific reports
In hybrid automatic insulin delivery (HAID) systems, meal disturbance is compensated by feedforward control, which requires the announcement of the meal by the patient with type 1 diabetes (DM1) to achieve the desired glycemic control performance. Th...

Learning control-ready forecasters for Blood Glucose Management.

Computers in biology and medicine
Type 1 diabetes (T1D) presents a significant health challenge, requiring patients to actively manage their blood glucose (BG) levels through regular bolus insulin administration. Automated control solutions based on machine learning (ML) models could...

Physiological model-based machine learning for classifying patients with binge-eating disorder (BED) from the Oral Glucose Tolerance Test (OGTT) curve.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Binge eating disorder (BED) is the most frequent eating disorder, often confused with obesity, with which it shares several characteristics. Early identification could enable targeted therapeutic interventions. In this study...

Hybrid Control Policy for Artificial Pancreas via Ensemble Deep Reinforcement Learning.

IEEE transactions on bio-medical engineering
OBJECTIVE: The artificial pancreas (AP) shows promise for closed-loop glucose control in type 1 diabetes mellitus (T1DM). However, designing effective control policies for the AP remains challenging due to complex physiological processes, delayed ins...