AIMC Topic: Ki-67 Antigen

Clear Filters Showing 31 to 40 of 58 articles

Deep Learning model-based approach for preoperative prediction of Ki67 labeling index status in a noninvasive way using magnetic resonance images: A single-center study.

Clinical neurology and neurosurgery
OBJECTIVES: Ki67 is an important biomarker of pituitary adenoma (PA) aggressiveness. In this study, PA invasion of surrounding structures is investigated and deep learning (DL) models are established for preoperative prediction of Ki67 labeling index...

Compound computer vision workflow for efficient and automated immunohistochemical analysis of whole slide images.

Journal of clinical pathology
AIMS: Immunohistochemistry (IHC) assessment of tissue is a central component of the modern pathology workflow, but quantification is challenged by subjective estimates by pathologists or manual steps in semi-automated digital tools. This study integr...

Artificial intelligence-assisted interpretation of Ki-67 expression and repeatability in breast cancer.

Diagnostic pathology
BACKGROUND: Ki-67 standard reference card (SRC) and artificial intelligence (AI) software were used to evaluate breast cancer Ki-67LI. We established training and validation sets and studied the repeatability inter-observers.

Quantitative Assessment of Epithelial Proliferation in Rat Mammary Gland Using Artificial Intelligence Independent of Choice of Proliferation Marker.

The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society
Epithelial proliferation in the rat mammary gland is recommended in regulatory guidelines as an endpoint for assessment of the in vivo carcinogenic potential of insulin analogues. Epithelial proliferation is traditionally assessed by immunohistochemi...

Artificial image objects for classification of breast cancer biomarkers with transcriptome sequencing data and convolutional neural network algorithms.

Breast cancer research : BCR
BACKGROUND: Transcriptome sequencing has been broadly available in clinical studies. However, it remains a challenge to utilize these data effectively for clinical applications due to the high dimension of the data and the highly correlated expressio...

Improving Ki67 assessment concordance by the use of an artificial intelligence-empowered microscope: a multi-institutional ring study.

Histopathology
AIMS: The nuclear proliferation biomarker Ki67 plays potential prognostic and predictive roles in breast cancer treatment. However, the lack of interpathologist consistency in Ki67 assessment limits the clinical use of Ki67. The aim of this article w...

The human-in-the-loop: an evaluation of pathologists' interaction with artificial intelligence in clinical practice.

Histopathology
AIMS: One of the major drivers of the adoption of digital pathology in clinical practice is the possibility of introducing digital image analysis (DIA) to assist with diagnostic tasks. This offers potential increases in accuracy, reproducibility, and...

PathoNet introduced as a deep neural network backend for evaluation of Ki-67 and tumor-infiltrating lymphocytes in breast cancer.

Scientific reports
The nuclear protein Ki-67 and Tumor infiltrating lymphocytes (TILs) have been introduced as prognostic factors in predicting both tumor progression and probable response to chemotherapy. The value of Ki-67 index and TILs in approach to heterogeneous ...

Improving the accuracy of gastrointestinal neuroendocrine tumor grading with deep learning.

Scientific reports
The Ki-67 index is an established prognostic factor in gastrointestinal neuroendocrine tumors (GI-NETs) and defines tumor grade. It is currently estimated by microscopically examining tumor tissue single-immunostained (SS) for Ki-67 and counting the ...

Hypothesis-free deep survival learning applied to the tumour microenvironment in gastric cancer.

The journal of pathology. Clinical research
The biological complexity reflected in histology images requires advanced approaches for unbiased prognostication. Machine learning and particularly deep learning methods are increasingly applied in the field of digital pathology. In this study, we p...