AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Natural Language Processing

Showing 201 to 210 of 3557 articles

Clear Filters

A pediatric emergency prediction model using natural language process in the pediatric emergency department.

Scientific reports
This study developed a predictive model using deep learning (DL) and natural language processing (NLP) to identify emergency cases in pediatric emergency departments. It analyzed 87,759 pediatric cases from a South Korean tertiary hospital (2012-2021...

Scalable information extraction from free text electronic health records using large language models.

BMC medical research methodology
BACKGROUND: A vast amount of potentially useful information such as description of patient symptoms, family, and social history is recorded as free-text notes in electronic health records (EHRs) but is difficult to reliably extract at scale, limiting...

Understanding generative AI to harness its potentials and mini- mize risks: A perspective.

European journal of radiology
The hype surrounding Generative AI is such that the impression one may get is that these technologies are solving all the problems of humankind, including medical diagnoses. This can result in great disappointments (or worse) unless there is a clear ...

Natural language processing-based classification of early Alzheimer's disease from connected speech.

Alzheimer's & dementia : the journal of the Alzheimer's Association
INTRODUCTION: The automated analysis of connected speech using natural language processing (NLP) emerges as a possible biomarker for Alzheimer's disease (AD). However, it remains unclear which types of connected speech are most sensitive and specific...

EmoAtlas: An emotional network analyzer of texts that merges psychological lexicons, artificial intelligence, and network science.

Behavior research methods
We introduce EmoAtlas, a computational library/framework extracting emotions and syntactic/semantic word associations from texts. EmoAtlas combines interpretable artificial intelligence (AI) for syntactic parsing in 18 languages and psychologically v...

Discontinuous named entities in clinical text: A systematic literature review.

Journal of biomedical informatics
OBJECTIVE: Extracting named entities from clinical free-text presents unique challenges, particularly when dealing with discontinuous entities-mentions that are separated by unrelated words. Traditional NER methods often struggle to accurately identi...

Large Language Model Approach for Zero-Shot Information Extraction and Clustering of Japanese Radiology Reports: Algorithm Development and Validation.

JMIR cancer
BACKGROUND: The application of natural language processing in medicine has increased significantly, including tasks such as information extraction and classification. Natural language processing plays a crucial role in structuring free-form radiology...

Guardian-BERT: Early detection of self-injury and suicidal signs with language technologies in electronic health reports.

Computers in biology and medicine
Mental health disorders, including non-suicidal self-injury (NSSI) and suicidal behavior, represent a growing global concern. Early detection of these conditions is crucial for timely intervention and prevention of adverse outcomes. In this study, we...

Large language models vs human for classifying clinical documents.

International journal of medical informatics
BACKGROUND: Accurate classification of medical records is crucial for clinical documentation, particularly when using the 10th revision of the International Classification of Diseases (ICD-10) coding system. The use of machine learning algorithms and...

Classifying Unstructured Text in Electronic Health Records for Mental Health Prediction Models: Large Language Model Evaluation Study.

JMIR medical informatics
BACKGROUND: Prediction models have demonstrated a range of applications across medicine, including using electronic health record (EHR) data to identify hospital readmission and mortality risk. Large language models (LLMs) can transform unstructured ...