AIMC Topic: Neural Networks, Computer

Clear Filters Showing 431 to 440 of 29824 articles

EEG-based neurodegenerative disease diagnosis: comparative analysis of conventional methods and deep learning models.

Scientific reports
In the context of lifestyle changes, stress and other environmental factors have resulted in the sudden hike in dementia globally. This necessitates investigations with respect to every horizon of the due cause for it; further on, the diagnosis and t...

Predictive biophysical neural network modeling of a compendium of in vivo transcription factor DNA binding profiles for Escherichia coli.

Nature communications
The DNA binding of most Escherichia coli Transcription Factors (TFs) has not been comprehensively mapped, and few have models that can quantitatively predict binding affinity. We report the global mapping of in vivo DNA binding for 139 E. coli TFs us...

Synthetic Lung Ultrasound Data Generation Using Autoencoder With Generative Adversarial Network.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Class imbalance is a significant challenge in medical image analysis, particularly in lung ultrasound (LUS), where severe patterns are often underrepresented. Traditional oversampling techniques, which simply duplicate original data, have limited eff...

Unsupervised Test-Time Adaptation for Hepatic Steatosis Grading Using Ultrasound B-Mode Images.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Ultrasound (US) is considered a key modality for the clinical assessment of hepatic steatosis (i.e., fatty liver) due to its noninvasiveness and availability. Deep learning methods have attracted considerable interest in this field, as they are capab...

BentRay-NeRF: Bent-Ray Neural Radiance Fields for Robust Speed-of-Sound Imaging in Ultrasound Computed Tomography.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Ultrasound computed tomography (USCT) is a promising technique for breast cancer detection because of its quantitative imaging capability of the speed of sound (SOS) of soft tissues and the fact that malignant breast lesions often have a higher SOS c...

A KAN-based hybrid deep neural networks for accurate identification of transcription factor binding sites.

PloS one
BACKGROUND: Predicting protein-DNA binding sites in vivo is a challenging but urgent task in many fields such as drug design and development. Most promoters contain many transcription factor (TF) binding sites, yet only a few have been identified thr...

Forecasting second-hand house prices in China using the GA-PSO-BP neural network model.

PloS one
While the traditional genetic algorithms are capable of forecasting house prices, they often suffer from premature convergence, which adversely affects the reliability of the forecasts. To address this issue, the research employs a genetic-particle s...

Identification of medicinal plant parts using depth-wise separable convolutional neural network.

PloS one
Identifying relevant plant parts is one of the most significant tasks in the pharmaceutical industry. Correct identification minimizes the risk of mis-identification, which might have unfavorable effects, and it ensures that plants are used medicinal...

Enhancing Neurodegenerative Disease Diagnosis Through Confidence-Driven Dynamic Spatio-Temporal Convolutional Network.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Dynamic brain networks are more effective than static networks in characterizing the evolving patterns of brain functional connectivity, making them a more promising tool for diagnosing neurodegenerative diseases. However, existing classification met...

Efficient, Robust, and Accurate CNN Predictor for Neuronal Activation in Directional Deep Brain Stimulation.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
The programming of clinical deep brain stimulation (DBS) systems involves numerous combinations of stimulation parameters, such as stimulus amplitude, pulse width, and frequency. As more complex electrode designs, such as directional electrodes, are ...