Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA
38819941
PURPOSE: Predictive models help determine predictive factors necessary to improve functional outcomes after total knee arthroplasty (TKA). However, no study has assessed predictive models for functional outcomes after TKA based on the new concepts of...
Knee osteoarthritis (OA) diagnosis is based on symptoms, assessed through questionnaires such as the WOMAC. However, the inconsistency of pain recording and the discrepancy between joint phenotype and symptoms highlight the need for objective biomark...
Our main objective was to use machine learning methods to identify significant structural factors associated with pain severity in knee osteoarthritis patients. Additionally, we assessed the potential of various classes of imaging data using machine ...
Physics-based modeling methods have the potential to investigate the mechanical factors associated with knee osteoarthritis (OA) and predict the future radiographic condition of the joint. However, it remains unclear what level of detail is optimal i...
The size and axial alignment of prostheses, when planned during total knee replacement (TKA) are critical for recovery of knee function and improvement of knee pain symptoms. This research aims to study the effect of artificial intelligence (AI)-base...
The application of Artificial intelligence (AI) and machine learning (ML) tools in total (TKA) and unicompartmental knee arthroplasty (UKA) emerges with the potential to improve patient-centered decision-making and outcome prediction in orthopedics, ...
Journal of imaging informatics in medicine
39020156
Meniscal injury is a common cause of knee joint pain and a precursor to knee osteoarthritis (KOA). The purpose of this study is to develop an automatic pipeline for meniscal injury classification and localization using fully and weakly supervised net...
OBJECTIVES: Knee osteoarthritis (KOA), a prevalent degenerative joint disease, is primarily diagnosed through X-ray imaging. The Kellgren-Lawrence grading system (K-L) is the gold standard for evaluating KOA severity through X-ray analysis. However, ...
Background Due to conflicting findings in the literature, there are concerns about a lack of objectivity in grading knee osteoarthritis (KOA) on radiographs. Purpose To examine how artificial intelligence (AI) assistance affects the performance and i...
OBJECTIVE: Accurately predicting knee osteoarthritis (KOA) is essential for early detection and personalized treatment. We aimed to develop and test a magnetic resonance imaging (MRI)-based joint space (JS) radiomic model (RM) to predict radiographic...