AIMC Topic: Polysomnography

Clear Filters Showing 61 to 70 of 242 articles

Automatic Sleep Stage Classification Using Nasal Pressure Decoding Based on a Multi-Kernel Convolutional BiLSTM Network.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Sleep quality is an essential parameter of a healthy human life, while sleep disorders such as sleep apnea are abundant. In the investigation of sleep and its malfunction, the gold-standard is polysomnography, which utilizes an extensive range of var...

State-of-the-art sleep arousal detection evaluated on a comprehensive clinical dataset.

Scientific reports
Aiming to apply automatic arousal detection to support sleep laboratories, we evaluated an optimized, state-of-the-art approach using data from daily work in our university hospital sleep laboratory. Therefore, a machine learning algorithm was traine...

Derivative Method to Detect Sleep and Awake States through Heart Rate Variability Analysis Using Machine Learning Algorithms.

Sensors (Basel, Switzerland)
Sleep disorders can have harmful consequences in both the short and long term. They can lead to attention deficits, as well as cardiac, neurological and behavioral repercussions. One of the most widely used methods for assessing sleep disorders is po...

Estimating the Severity of Obstructive Sleep Apnea Using ECG, Respiratory Effort and Neural Networks.

IEEE journal of biomedical and health informatics
OBJECTIVE: wearable sensor technology has progressed significantly in the last decade, but its clinical usability for the assessment of obstructive sleep apnea (OSA) is limited by the lack of large and representative datasets simultaneously acquired ...

A Multi-Level Interpretable Sleep Stage Scoring System by Infusing Experts' Knowledge Into a Deep Network Architecture.

IEEE transactions on pattern analysis and machine intelligence
In recent years, deep learning has shown potential and efficiency in a wide area including computer vision, image and signal processing. Yet, translational challenges remain for user applications due to a lack of interpretability of algorithmic decis...

Machine learning methods for adult OSAHS risk prediction.

BMC health services research
BACKGROUND: Obstructive sleep apnea hypopnea syndrome (OSAHS) is a common disease that can cause multiple organ damage in the whole body. Our aim was to use machine learning (ML) to build an independent polysomnography (PSG) model to analyze risk fac...

Artificial intelligence augmented home sleep apnea testing device study (AISAP study).

PloS one
STUDY OBJECTIVE: This study aimed to prospectively validate the performance of an artificially augmented home sleep apnea testing device (WVU-device) and its patented technology.

Association Between Sleep Quality and Deep Learning-Based Sleep Onset Latency Distribution Using an Electroencephalogram.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
To evaluate sleep quality, it is necessary to monitor overnight sleep duration. However, sleep monitoring typically requires more than 7 hours, which can be inefficient in termxs of data size and analysis. Therefore, we proposed to develop a deep lea...