AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Prenatal Diagnosis

Showing 1 to 10 of 50 articles

Clear Filters

Validation of the first-trimester machine learning model for predicting pre-eclampsia in an Asian population.

International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics
OBJECTIVES: To evaluate the performance of an artificial intelligence (AI) and machine learning (ML) model for first-trimester screening for pre-eclampsia in a large Asian population.

Machine learning in prenatal MRI predicts postnatal ventricular abnormalities in fetuses with isolated ventriculomegaly.

European radiology
OBJECTIVES: To evaluate the intracranial structures and brain parenchyma radiomics surrounding the occipital horn of the lateral ventricle in normal fetuses (NFs) and fetuses with ventriculomegaly (FVs), as well as to predict postnatally enlarged lat...

Machine Learning to Predict Outcomes of Fetal Cardiac Disease: A Pilot Study.

Pediatric cardiology
Prediction of outcomes following a prenatal diagnosis of congenital heart disease (CHD) is challenging. Machine learning (ML) algorithms may be used to reduce clinical uncertainty and improve prognostic accuracy. We performed a pilot study to train M...

Prediction of chromosomal abnormalities in the screening of the first trimester of pregnancy using machine learning methods: a study protocol.

Reproductive health
BACKGROUND: For women in the first trimester, amniocentesis or chorionic villus sampling is recommended for screening. Machine learning has shown increased accuracy over time and finds numerous applications in enhancing decision-making, patient care,...

Data for AI in Congenital Heart Defects: Systematic Review.

Studies in health technology and informatics
Congenital heart disease (CHD) represents a significant challenge in prenatal care due to low prenatal detection rates. Artificial Intelligence (AI) offers promising avenues for precise CHD prediction. In this study we conducted a systematic review a...

Noninvasive fetal genotyping using deep neural networks.

Briefings in bioinformatics
Circulating cell-free DNA (cfDNA) is a powerful diagnostics tool that is widely studied in the context of liquid biopsy in oncology and other fields. In obstetrics, maternal plasma cfDNA have already proven its utility, enabling noninvasive prenatal ...

Precision fetal cardiology detects cyanotic congenital heart disease using maternal saliva metabolome and artificial intelligence.

Scientific reports
Prenatal sonographic diagnosis of congenital heart disease (CHD) can lead to improved morbidity and mortality. However, the diagnostic accuracy of ultrasound, the sole prenatal screening tool, remains limited. Failed prenatal or early newborn detecti...

Towards automatic US-MR fetal brain image registration with learning-based methods.

NeuroImage
Fetal brain imaging is essential for prenatal care, with ultrasound (US) and magnetic resonance imaging (MRI) providing complementary strengths. While MRI has superior soft tissue contrast, US offers portable and inexpensive screening of neurological...

Deep Learning-based Brain Age Prediction Using MRI to Identify Fetuses with Cerebral Ventriculomegaly.

Radiology. Artificial intelligence
Fetal ventriculomegaly (VM) and its severity and associated central nervous system (CNS) abnormalities are important indicators of high risk for impaired neurodevelopmental outcomes. Recently, a novel fetal brain age prediction method using a two-dim...