Preterm neonates are highly likely to suffer from ventriculomegaly, a dilation of the Cerebral Ventricular System (CVS). This condition can develop into life-threatening hydrocephalus and is correlated with future neuro-developmental impairments. Con...
BACKGROUND: Ventriculoperitoneal shunt (VPS) is the most common procedure used in the management of hydrocephalus regardless of the etiology. The standard free-hand technique is used for the placement of VPS in patients with enlarged ventricles. In p...
IEEE journal of biomedical and health informatics
35849684
Cerebral ventricles are one of the prominent structures in the brain, segmenting which can provide rich information for brain-related disease diagnosis. Unfortunately, cerebral ventricle segmentation in complex clinical cases, such as in the coexiste...
OBJECTIVES: To evaluate the intracranial structures and brain parenchyma radiomics surrounding the occipital horn of the lateral ventricle in normal fetuses (NFs) and fetuses with ventriculomegaly (FVs), as well as to predict postnatally enlarged lat...
Purpose To develop a fast and fully automated deep learning (DL)-based method for the MRI planimetric segmentation and measurement of the brainstem and ventricular structures most affected in patients with progressive supranuclear palsy (PSP). Materi...
BACKGROUND: Three-dimensional (3D) ultrasound (US) imaging has shown promise in non-invasive monitoring of changes in the lateral brain ventricles of neonates suffering from intraventricular hemorrhaging. Due to the poorly defined anatomical boundari...
BACKGROUND AND OBJECTIVES: Ventriculo-peritoneal shunt procedures can improve idiopathic normal pressure hydrocephalus (iNPH) symptoms. However, there are no automated methods that quantify the presurgery and postsurgery changes in the ventricular vo...
While ventricular shunts are the main treatment for adult hydrocephalus, shunt malfunction remains a common problem that can be challenging to diagnose. Computer vision-derived algorithms present a potential solution. We designed a feasibility study ...
PURPOSE: To obtain high-resolution velocity fields of cerebrospinal fluid (CSF) and cerebral blood flow by applying a physics-guided neural network (div-mDCSRN-Flow) to 4D flow MRI.