AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Protein Binding

Showing 391 to 400 of 811 articles

Clear Filters

An interpretable bimodal neural network characterizes the sequence and preexisting chromatin predictors of induced transcription factor binding.

Genome biology
BACKGROUND: Transcription factor (TF) binding specificity is determined via a complex interplay between the transcription factor's DNA binding preference and cell type-specific chromatin environments. The chromatin features that correlate with transc...

MATHLA: a robust framework for HLA-peptide binding prediction integrating bidirectional LSTM and multiple head attention mechanism.

BMC bioinformatics
BACKGROUND: Accurate prediction of binding between class I human leukocyte antigen (HLA) and neoepitope is critical for target identification within personalized T-cell based immunotherapy. Many recent prediction tools developed upon the deep learnin...

Artificial intelligence in the early stages of drug discovery.

Archives of biochemistry and biophysics
Although the use of computational methods within the pharmaceutical industry is well established, there is an urgent need for new approaches that can improve and optimize the pipeline of drug discovery and development. In spite of the fact that there...

Deep neural networks for inferring binding sites of RNA-binding proteins by using distributed representations of RNA primary sequence and secondary structure.

BMC genomics
BACKGROUND: RNA binding proteins (RBPs) play a vital role in post-transcriptional processes in all eukaryotes, such as splicing regulation, mRNA transport, and modulation of mRNA translation and decay. The identification of RBP binding sites is a cru...

Directed Evolution of a Selective and Sensitive Serotonin Sensor via Machine Learning.

Cell
Serotonin plays a central role in cognition and is the target of most pharmaceuticals for psychiatric disorders. Existing drugs have limited efficacy; creation of improved versions will require better understanding of serotonergic circuitry, which ha...

ChemBoost: A Chemical Language Based Approach for Protein - Ligand Binding Affinity Prediction.

Molecular informatics
Identification of high affinity drug-target interactions is a major research question in drug discovery. Proteins are generally represented by their structures or sequences. However, structures are available only for a small subset of biomolecules an...

RBPsuite: RNA-protein binding sites prediction suite based on deep learning.

BMC genomics
BACKGROUND: RNA-binding proteins (RBPs) play crucial roles in various biological processes. Deep learning-based methods have been demonstrated powerful on predicting RBP sites on RNAs. However, the training of deep learning models is very time-intens...

DeepA-RBPBS: A hybrid convolution and recurrent neural network combined with attention mechanism for predicting RBP binding site.

Journal of biomolecular structure & dynamics
It's important to infer the binding site of RNA-binding proteins (RBP) for understanding the interaction between RBP and its RNA targets and decipher the mechanisms of transcriptional regulation. However, experimental detection of RBP binding sites i...

Machine learning-based prediction of enzyme substrate scope: Application to bacterial nitrilases.

Proteins
Predicting the range of substrates accepted by an enzyme from its amino acid sequence is challenging. Although sequence- and structure-based annotation approaches are often accurate for predicting broad categories of substrate specificity, they gener...

AK-Score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks.

International journal of molecular sciences
Accurate prediction of the binding affinity of a protein-ligand complex is essential for efficient and successful rational drug design. Therefore, many binding affinity prediction methods have been developed. In recent years, since deep learning tech...