AIMC Topic: Proteins

Clear Filters Showing 1111 to 1120 of 1970 articles

Coupling dynamics and evolutionary information with structure to identify protein regulatory and functional binding sites.

Proteins
Binding sites in proteins can be either specifically functional binding sites (active sites) that bind specific substrates with high affinity or regulatory binding sites (allosteric sites), that modulate the activity of functional binding sites throu...

DeepACLSTM: deep asymmetric convolutional long short-term memory neural models for protein secondary structure prediction.

BMC bioinformatics
BACKGROUND: Protein secondary structure (PSS) is critical to further predict the tertiary structure, understand protein function and design drugs. However, experimental techniques of PSS are time consuming and expensive, and thus it's very urgent to ...

Analysis and prediction of human acetylation using a cascade classifier based on support vector machine.

BMC bioinformatics
BACKGROUND: Acetylation on lysine is a widespread post-translational modification which is reversible and plays a crucial role in some biological activities. To better understand the mechanism, it is necessary to identify acetylation sites in protein...

DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences.

PLoS computational biology
Identification of drug-target interactions (DTIs) plays a key role in drug discovery. The high cost and labor-intensive nature of in vitro and in vivo experiments have highlighted the importance of in silico-based DTI prediction approaches. In severa...

ProteinNet: a standardized data set for machine learning of protein structure.

BMC bioinformatics
BACKGROUND: Rapid progress in deep learning has spurred its application to bioinformatics problems including protein structure prediction and design. In classic machine learning problems like computer vision, progress has been driven by standardized ...

Auto-encoding NMR chemical shifts from their native vector space to a residue-level biophysical index.

Nature communications
Chemical shifts (CS) are determined from NMR experiments and represent the resonance frequency of the spin of atoms in a magnetic field. They contain a mixture of information, encompassing the in-solution conformations a protein adopts, as well as th...

Deep Learning to Therapeutically Target Unreported Complexes.

Trends in pharmacological sciences
The disruption of large protein-protein (PP) interfaces remains a challenge in targeted therapy. Designing drugs that compete with binding partners is daunting, especially when the structure of the protein complex is unknown. To address the problem w...

Discrimination power of knowledge-based potential dictated by the dominant energies in native protein structures.

Amino acids
Extracting a well-designed energy function is important for protein structure evaluation. Knowledge-based potential functions are one type of the energy functions which can be obtained from known protein structures. The pairwise potential between ato...

PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges.

Journal of chemical theory and computation
In recent years, machine learning (ML) methods have become increasingly popular in computational chemistry. After being trained on appropriate ab initio reference data, these methods allow for accurately predicting the properties of chemical systems,...

DEEPred: Automated Protein Function Prediction with Multi-task Feed-forward Deep Neural Networks.

Scientific reports
Automated protein function prediction is critical for the annotation of uncharacterized protein sequences, where accurate prediction methods are still required. Recently, deep learning based methods have outperformed conventional algorithms in comput...