AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Quantitative Structure-Activity Relationship

Showing 71 to 80 of 476 articles

Clear Filters

A SAR and QSAR study on 3CLpro inhibitors of SARS-CoV-2 using machine learning methods.

SAR and QSAR in environmental research
The 3C-like Proteinase (3CLpro) of novel coronaviruses is intricately linked to viral replication, making it a crucial target for antiviral agents. In this study, we employed two fingerprint descriptors (ECFP_4 and MACCS) to comprehensively character...

Flavonoid as a Potent Antioxidant: Quantitative Structure-Activity Relationship Analysis, Mechanism Study, and Molecular Design by Synergizing Molecular Simulation and Machine Learning.

The journal of physical chemistry. A
In this work, a quantitative structure-antioxidant activity relationship of flavonoids was performed using a machine learning (ML) method. To achieve lipid-soluble, highly antioxidant flavonoids, 398 molecular structures with various substitute group...

Near-Term Quantum Classification Algorithms Applied to Antimalarial Drug Discovery.

Journal of chemical information and modeling
Computational approaches are widely applied in drug discovery to explore properties related to bioactivity, physiochemistry, and toxicology. Over at least the last 20 years, the exploitation of machine learning on molecular data sets has been used to...

HT_PREDICT: a machine learning-based computational open-source tool for screening HDAC6 inhibitors.

SAR and QSAR in environmental research
Histone deacetylase 6 (HDAC6) is a promising drug target for the treatment of human diseases such as cancer, neurodegenerative diseases (in particular, Alzheimer's disease), and multiple sclerosis. Considerable attention is paid to the development of...

Machine learning and deep learning approaches for enhanced prediction of hERG blockade: a comprehensive QSAR modeling study.

Expert opinion on drug metabolism & toxicology
BACKGROUND: Cardiotoxicity is a major cause of drug withdrawal. The hERG channel, regulating ion flow, is pivotal for heart and nervous system function. Its blockade is a concern in drug development. Predicting hERG blockade is essential for identify...

Prediction of retention data of phenolic compounds by quantitative structure retention relationship models under reverse-phase liquid chromatography.

Journal of chromatography. A
Quantitative Structure-Retention Relationship models were developed to identify phenolic compounds using a typical LC- system, with both UV and MS detection. A new chromatographic method was developed for the separation of fifty-two standard phenolic...

Application of machine learning models for property prediction to targeted protein degraders.

Nature communications
Machine learning (ML) systems can model quantitative structure-property relationships (QSPR) using existing experimental data and make property predictions for new molecules. With the advent of modalities such as targeted protein degraders (TPD), the...

Machine-Learning-Guided Peptide Drug Discovery: Development of GLP-1 Receptor Agonists with Improved Drug Properties.

Journal of medicinal chemistry
Peptide-based drug discovery has surged with the development of peptide hormone-derived analogs for the treatment of diabetes and obesity. Machine learning (ML)-enabled quantitative structure-activity relationship (QSAR) approaches have shown great p...

Prediction of Human Liver Microsome Clearance with Chirality-Focused Graph Neural Networks.

Journal of chemical information and modeling
In drug candidate design, clearance is one of the most crucial pharmacokinetic parameters to consider. Recent advancements in machine learning techniques coupled with the growing accumulation of drug data have paved the way for the construction of co...