OBJECTIVE: To demonstrate similar image quality with deep learning image reconstruction (DLIR) in reduced contrast medium (CM) and radiation dose (double-low-dose) head CT angiography (CTA), in comparison with standard-dose and adaptive statistical i...
Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
Jan 18, 2023
PURPOSE: To characterize the performance of the Precise Image (PI) deep learning reconstruction (DLR) algorithm for abdominal Computed Tomography (CT) imaging.
IMPORTANCE: Dual-energy chest radiography exhibits better sensitivity than single-energy chest radiography, partly due to its ability to remove overlying anatomical structures.
PURPOSE: We assessed the physical properties of virtual monochromatic images (VMIs) obtained with different energy levels in various contrast settings and radiation doses using deep learning-based spectral computed tomography (DL-Spectral CT) and com...
Journal of applied clinical medical physics
Dec 30, 2022
AIMS: The aims of the present study were to, for both a full-dose protocol and an ultra-low dose (ULD) protocol, compare the image quality of chest CT examinations reconstructed using TrueFidelity (Standard kernel) with corresponding examinations rec...
PURPOSE: To compare the image quality and conspicuity of pancreatic ductal adenocarcinoma (PDAC) between the low-kVp and dual-energy pancreatic protocol CT reconstructed with deep-learning image reconstruction (DLIR).
OBJECTIVE: Low monoenergetic images obtained using noise-reduction techniques may reduce CT contrast media requirements. We aimed to investigate the effectiveness of low-contrast-dose CT using dual-energy CT and deep learning-based denoising (DLD) te...
Lung cancer manifests as pulmonary nodules in the early stage. Thus, the early and accurate detection of these nodules is crucial for improving the survival rate of patients. We propose a novel two-stage model for lung nodule detection. In the candid...
PURPOSE: This study determined whether image quality and detectability of ultralow-dose hepatic multiphase CT (ULDCT, 33.3% dose) using a vendor-agnostic deep learning model(DLM) are noninferior to those of standard-dose CT (SDCT, 100% dose) using mo...
OBJECTIVE: To investigate performance of 1-mm, sharp kernel, low-dose chest computed tomography (LDCT) for coronary artery calcium scoring (CACS) using deep learning (DL)-based denoising technique.