AIMC Topic: Sequence Analysis, DNA

Clear Filters Showing 91 to 100 of 274 articles

An approach using ddRADseq and machine learning for understanding speciation in Antarctic Antarctophilinidae gastropods.

Scientific reports
Sampling impediments and paucity of suitable material for molecular analyses have precluded the study of speciation and radiation of deep-sea species in Antarctica. We analyzed barcodes together with genome-wide single nucleotide polymorphisms obtain...

Improving protein domain classification for third-generation sequencing reads using deep learning.

BMC genomics
BACKGROUND: With the development of third-generation sequencing (TGS) technologies, people are able to obtain DNA sequences with lengths from 10s to 100s of kb. These long reads allow protein domain annotation without assembly, thus can produce impor...

SeqEnhDL: sequence-based classification of cell type-specific enhancers using deep learning models.

BMC research notes
OBJECTIVE: To address the challenge of computational identification of cell type-specific regulatory elements on a genome-wide scale.

Prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning.

Nature communications
Elucidating functionality in non-coding regions is a key challenge in human genomics. It has been shown that intolerance to variation of coding and proximal non-coding sequence is a strong predictor of human disease relevance. Here, we integrate into...

DeepCAPE: A Deep Convolutional Neural Network for the Accurate Prediction of Enhancers.

Genomics, proteomics & bioinformatics
The establishment of a landscape of enhancers across human cells is crucial to deciphering the mechanism of gene regulation, cell differentiation, and disease development. High-throughput experimental approaches, which contain successfully reported e...

Use of machine learning to identify a T cell response to SARS-CoV-2.

Cell reports. Medicine
The identification of SARS-CoV-2-specific T cell receptor (TCR) sequences is critical for understanding T cell responses to SARS-CoV-2. Accordingly, we reanalyze publicly available data from SARS-CoV-2-recovered patients who had low-severity disease ...

iPTT(2 L)-CNN: A Two-Layer Predictor for Identifying Promoters and Their Types in Plant Genomes by Convolutional Neural Network.

Computational and mathematical methods in medicine
A promoter is a short DNA sequence near to the start codon, responsible for initiating transcription of a specific gene in genome. The accurate recognition of promoters has great significance for a better understanding of the transcriptional regulati...

A Computational Framework Based on Ensemble Deep Neural Networks for Essential Genes Identification.

International journal of molecular sciences
Essential genes contain key information of genomes that could be the key to a comprehensive understanding of life and evolution. Because of their importance, studies of essential genes have been considered a crucial problem in computational biology. ...

Predicting 3D genome folding from DNA sequence with Akita.

Nature methods
In interphase, the human genome sequence folds in three dimensions into a rich variety of locus-specific contact patterns. Cohesin and CTCF (CCCTC-binding factor) are key regulators; perturbing the levels of either greatly disrupts genome-wide foldin...

Keeping up with the genomes: efficient learning of our increasing knowledge of the tree of life.

BMC bioinformatics
BACKGROUND: It is a computational challenge for current metagenomic classifiers to keep up with the pace of training data generated from genome sequencing projects, such as the exponentially-growing NCBI RefSeq bacterial genome database. When new ref...