AIMC Topic: Sequence Analysis, DNA

Clear Filters Showing 91 to 100 of 269 articles

Use of machine learning to identify a T cell response to SARS-CoV-2.

Cell reports. Medicine
The identification of SARS-CoV-2-specific T cell receptor (TCR) sequences is critical for understanding T cell responses to SARS-CoV-2. Accordingly, we reanalyze publicly available data from SARS-CoV-2-recovered patients who had low-severity disease ...

iPTT(2 L)-CNN: A Two-Layer Predictor for Identifying Promoters and Their Types in Plant Genomes by Convolutional Neural Network.

Computational and mathematical methods in medicine
A promoter is a short DNA sequence near to the start codon, responsible for initiating transcription of a specific gene in genome. The accurate recognition of promoters has great significance for a better understanding of the transcriptional regulati...

A Computational Framework Based on Ensemble Deep Neural Networks for Essential Genes Identification.

International journal of molecular sciences
Essential genes contain key information of genomes that could be the key to a comprehensive understanding of life and evolution. Because of their importance, studies of essential genes have been considered a crucial problem in computational biology. ...

Predicting 3D genome folding from DNA sequence with Akita.

Nature methods
In interphase, the human genome sequence folds in three dimensions into a rich variety of locus-specific contact patterns. Cohesin and CTCF (CCCTC-binding factor) are key regulators; perturbing the levels of either greatly disrupts genome-wide foldin...

Keeping up with the genomes: efficient learning of our increasing knowledge of the tree of life.

BMC bioinformatics
BACKGROUND: It is a computational challenge for current metagenomic classifiers to keep up with the pace of training data generated from genome sequencing projects, such as the exponentially-growing NCBI RefSeq bacterial genome database. When new ref...

DeepHE: Accurately predicting human essential genes based on deep learning.

PLoS computational biology
Accurately predicting essential genes using computational methods can greatly reduce the effort in finding them via wet experiments at both time and resource scales, and further accelerate the process of drug discovery. Several computational methods ...

Accurate prediction of DNA N-methylcytosine sites via boost-learning various types of sequence features.

BMC genomics
BACKGROUND: DNA N4-methylcytosine (4mC) is a critical epigenetic modification and has various roles in the restriction-modification system. Due to the high cost of experimental laboratory detection, computational methods using sequence characteristic...

A machine learning approach to optimizing cell-free DNA sequencing panels: with an application to prostate cancer.

BMC cancer
BACKGROUND: Cell-free DNA's (cfDNA) use as a biomarker in cancer is challenging due to genetic heterogeneity of malignancies and rarity of tumor-derived molecules. Here we describe and demonstrate a novel machine-learning guided panel design strategy...

A machine learning framework to trace tumor tissue-of-origin of 13 types of cancer based on DNA somatic mutation.

Biochimica et biophysica acta. Molecular basis of disease
Carcinoma of unknown primary (CUP), defined as metastatic cancers with unknown cancer origin, occurs in 3-5 per 100 cancer patients in the United States. Heterogeneity and metastasis of cancer brings great difficulties to the follow-up diagnosis and ...

Predicting gene regulatory regions with a convolutional neural network for processing double-strand genome sequence information.

PloS one
With advances in sequencing technology, a vast amount of genomic sequence information has become available. However, annotating biological functions particularly of non-protein-coding regions in genome sequences without experiments is still a challen...