AIMC Topic: Signal-To-Noise Ratio

Clear Filters Showing 221 to 230 of 871 articles

Effect of MR head coil geometry on deep-learning-based MR image reconstruction.

Magnetic resonance in medicine
PURPOSE: To investigate whether parallel imaging-imposed geometric coil constraints can be relaxed when using a deep learning (DL)-based image reconstruction method as opposed to a traditional non-DL method.

Rapid 2D Na MRI of the calf using a denoising convolutional neural network.

Magnetic resonance imaging
PURPOSE: Na MRI can be used to quantify in-vivo tissue sodium concentration (TSC), but the inherently low Na signal leads to long scan times and/or noisy or low-resolution images. Reconstruction algorithms such as compressed sensing (CS) have been pr...

Population-based deep image prior for dynamic PET denoising: A data-driven approach to improve parametric quantification.

Medical image analysis
The high noise level of dynamic Positron Emission Tomography (PET) images degrades the quality of parametric images. In this study, we aim to improve the quality and quantitative accuracy of K images by utilizing deep learning techniques to reduce th...

SPINNED: Simulation-based physics-informed neural network for deconvolution of dynamic susceptibility contrast MRI perfusion data.

Magnetic resonance in medicine
PURPOSE: To propose the simulation-based physics-informed neural network for deconvolution of dynamic susceptibility contrast (DSC) MRI (SPINNED) as an alternative for more robust and accurate deconvolution compared to existing methods.

Pure Vision Transformer (CT-ViT) with Noise2Neighbors Interpolation for Low-Dose CT Image Denoising.

Journal of imaging informatics in medicine
Convolutional neural networks (CNN) have been used for a wide variety of deep learning applications, especially in computer vision. For medical image processing, researchers have identified certain challenges associated with CNNs. These challenges en...

Reduction of ADC bias in diffusion MRI with deep learning-based acceleration: A phantom validation study at 3.0 T.

Magnetic resonance imaging
PURPOSE: Further acceleration of DWI in diagnostic radiology is desired but challenging mainly due to low SNR in high b-value images and associated bias in quantitative ADC values. Deep learning-based reconstruction and denoising may provide a soluti...

DeepFLAIR: A neural network approach to mitigate signal and contrast loss in temporal lobes at 7 Tesla FLAIR images.

Magnetic resonance imaging
BACKGROUND AND PURPOSE: Higher magnetic field strength introduces stronger magnetic field inhomogeneities in the brain, especially within temporal lobes, leading to image artifacts. Particularly, T2-weighted fluid-attenuated inversion recovery (FLAIR...

Influence of deep learning image reconstruction algorithm for reducing radiation dose and image noise compared to iterative reconstruction and filtered back projection for head and chest computed tomography examinations: a systematic review.

F1000Research
BACKGROUND: The most recent advances in Computed Tomography (CT) image reconstruction technology are Deep learning image reconstruction (DLIR) algorithms. Due to drawbacks in Iterative reconstruction (IR) techniques such as negative image texture and...

Results of the 2023 ISBI challenge to reduce GABA-edited MRS acquisition time.

Magma (New York, N.Y.)
PURPOSE: Use a conference challenge format to compare machine learning-based gamma-aminobutyric acid (GABA)-edited magnetic resonance spectroscopy (MRS) reconstruction models using one-quarter of the transients typically acquired during a complete sc...