AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Sleep Apnea, Obstructive

Showing 71 to 80 of 138 articles

Clear Filters

Detection of Snore from OSAHS Patients Based on Deep Learning.

Journal of healthcare engineering
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is extremely harmful to the human body and may cause neurological dysfunction and endocrine dysfunction, resulting in damage to multiple organs and multiple systems throughout the body and negatively ...

Classification and Detection of Breathing Patterns with Wearable Sensors and Deep Learning.

Sensors (Basel, Switzerland)
Rapid assessment of breathing patterns is important for several emergency medical situations. In this research, we developed a non-invasive breathing analysis system that automatically detects different types of breathing patterns of clinical signifi...

Prediction of metabolic syndrome based on sleep and work-related risk factors using an artificial neural network.

BMC endocrine disorders
BACKGROUND: Metabolic syndrome (MetS) is a major public health concern due to its high prevalence and association with heart disease and diabetes. Artificial neural networks (ANN) are emerging as a reliable means of modelling relationships towards un...

A comparison of regularized logistic regression and random forest machine learning models for daytime diagnosis of obstructive sleep apnea.

Medical & biological engineering & computing
A major challenge in big and high-dimensional data analysis is related to the classification and prediction of the variables of interest by characterizing the relationships between the characteristic factors and predictors. This study aims to assess ...

Distinguishing Obstructive Versus Central Apneas in Infrared Video of Sleep Using Deep Learning: Validation Study.

Journal of medical Internet research
BACKGROUND: Sleep apnea is a respiratory disorder characterized by an intermittent reduction (hypopnea) or cessation (apnea) of breathing during sleep. Depending on the presence of a breathing effort, sleep apnea is divided into obstructive sleep apn...

Predicting polysomnographic severity thresholds in children using machine learning.

Pediatric research
BACKGROUND: Approximately 500,000 children undergo tonsillectomy and adenoidectomy (T&A) annually for treatment of obstructive sleep disordered breathing (oSDB). Although polysomnography is beneficial for preoperative risk stratification in these chi...

Recognition of Patient Groups with Sleep Related Disorders using Bio-signal Processing and Deep Learning.

Sensors (Basel, Switzerland)
Accurately diagnosing sleep disorders is essential for clinical assessments and treatments. Polysomnography (PSG) has long been used for detection of various sleep disorders. In this research, electrocardiography (ECG) and electromayography (EMG) hav...

Integrating the STOP-BANG Score and Clinical Data to Predict Cardiovascular Events After Infarction: A Machine Learning Study.

Chest
BACKGROUND: OSA conveys worse clinical outcomes in patients with coronary artery disease. The STOP-BANG score is a simple tool that evaluates the risk of OSA and can be added to the large number of clinical variables and scores that are obtained duri...

Accurate Deep Learning-Based Sleep Staging in a Clinical Population With Suspected Obstructive Sleep Apnea.

IEEE journal of biomedical and health informatics
The identification of sleep stages is essential in the diagnostics of sleep disorders, among which obstructive sleep apnea (OSA) is one of the most prevalent. However, manual scoring of sleep stages is time-consuming, subjective, and costly. To overc...