AIMC Topic: Suicidal Ideation

Clear Filters Showing 11 to 20 of 96 articles

Prediction of first attempt of suicide in early adolescence using machine learning.

Journal of affective disorders
BACKGROUND: Suicide is the second leading cause of death among early adolescents, yet the first onset of suicide attempts during this critical developmental period remains poorly understood. This study aimed to identify key characteristics associated...

Protocol for socioecological study of autism, suicide risk, and mental health care: Integrating machine learning and community consultation for suicide prevention.

PloS one
INTRODUCTION: Autistic people experience higher risk of suicidal ideation (SI) and suicide attempts (SA) compared to non-autistic people, yet there is limited understanding of complex, multilevel factors that drive this disparity. Further, determinan...

Validation of a machine learning model for indirect screening of suicidal ideation in the general population.

Scientific reports
Suicide is among the leading causes of death worldwide and a concerning public health problem, accounting for over 700,000 registered deaths worldwide. However, suicide deaths are preventable with timely and evidence-based interventions, which are of...

Differentiating adolescent suicidal and nonsuicidal self-harm with artificial intelligence: Beyond suicidal intent and capability for suicide.

Journal of affective disorders
Clinical differentiation between adolescent suicidal self-harm (SSH) and nonsuicidal self-harm (NSSH) is a significant challenge for mental health professionals, and its feasibility is controversial. The aim of the present study was to determine whet...

An Explainable Artificial Intelligence Text Classifier for Suicidality Prediction in Youth Crisis Text Line Users: Development and Validation Study.

JMIR public health and surveillance
BACKGROUND: Suicide represents a critical public health concern, and machine learning (ML) models offer the potential for identifying at-risk individuals. Recent studies using benchmark datasets and real-world social media data have demonstrated the ...

Natural language processing to identify suicidal ideation and anhedonia in major depressive disorder.

BMC medical informatics and decision making
BACKGROUND: Anhedonia and suicidal ideation are symptoms of major depressive disorder (MDD) that are not regularly captured in structured scales but may be captured in unstructured clinical notes. Natural language processing (NLP) techniques may be u...

Evaluating of BERT-based and Large Language Mod for Suicide Detection, Prevention, and Risk Assessment: A Systematic Review.

Journal of medical systems
Suicide constitutes a public health issue of major concern. Ongoing progress in the field of artificial intelligence, particularly in the domain of large language models, has played a significant role in the detection, risk assessment, and prevention...

Machine Learning-Based Suicide Risk Prediction Model for Suicidal Trajectory on Social Media Following Suicidal Mentions: Independent Algorithm Validation.

Journal of medical Internet research
BACKGROUND: Previous efforts to apply machine learning-based natural language processing to longitudinally collected social media data have shown promise in predicting suicide risk.

Enhancing suicidal behavior detection in EHRs: A multi-label NLP framework with transformer models and semantic retrieval-based annotation.

Journal of biomedical informatics
BACKGROUND: Suicide is a leading cause of death worldwide, making early identification of suicidal behaviors crucial for clinicians. Current Natural Language Processing (NLP) approaches for identifying suicidal behaviors in Electronic Health Records ...

Exploring new scientific innovations in combating suicide: a stress detection wristband.

The Pan African medical journal
There is a silent pandemic of suicides around the world, with an exponential increase in suicidality and chronic suicidal ideations. The exact global estimates cannot be accurately ascertained, but analysis will put it at more than a million annually...