AIMC Topic: Suicide, Attempted

Clear Filters Showing 1 to 10 of 71 articles

Decoding vital variables in predicting different phases of suicide among young adults with childhood sexual abuse: a machine learning approach.

Translational psychiatry
Young adults with childhood sexual abuse (CSA) are an especially vulnerable group to suicide. Suicide encompasses different phases, but for CSA survivors the salient factors precipitating suicide are rarely studied. In this study, from a progressive ...

Unveiling sex difference in factors associated with suicide attempt among Chinese adolescents with depression: a machine learning-based study.

Journal of mental health (Abingdon, England)
BACKGROUND: Adolescents with depression are at heightened risk of suicide, with a distinct sex difference in suicidal behaviour observed. This study explores the sex-specific factors influencing suicide attempts among Chinese adolescents with depress...

Protocol for socioecological study of autism, suicide risk, and mental health care: Integrating machine learning and community consultation for suicide prevention.

PloS one
INTRODUCTION: Autistic people experience higher risk of suicidal ideation (SI) and suicide attempts (SA) compared to non-autistic people, yet there is limited understanding of complex, multilevel factors that drive this disparity. Further, determinan...

Development and validation of short-term, medium-term, and long-term suicide attempt prediction models based on a prospective cohort in Korea.

Asian journal of psychiatry
BACKGROUND: This study aimed to develop and validate prediction models for short-(3 months), medium-(1 year), and long-term suicide attempts among high-risk individuals in South Korea.

Differentiating adolescent suicidal and nonsuicidal self-harm with artificial intelligence: Beyond suicidal intent and capability for suicide.

Journal of affective disorders
Clinical differentiation between adolescent suicidal self-harm (SSH) and nonsuicidal self-harm (NSSH) is a significant challenge for mental health professionals, and its feasibility is controversial. The aim of the present study was to determine whet...

Improving explainability of post-separation suicide attempt prediction models for transitioning service members: insights from the Army Study to Assess Risk and Resilience in Servicemembers - Longitudinal Study.

Translational psychiatry
Risk of U.S. Army soldier suicide-related behaviors increases substantially after separation from service. As universal prevention programs have been unable to resolve this problem, a previously reported machine learning model was developed using pre...

A Longitudinal Prediction of Suicide Attempts in Borderline Personality Disorder: A Machine Learning Study.

Journal of clinical psychology
Borderline personality disorder (BPD) is associated with a high risk of suicide. Despite several risk factors being known, identifying vulnerable patients in clinical practice remains a challenge so far. The current study aimed at predicting suicide ...

Predicting suicidal behavior outcomes: an analysis of key factors and machine learning models.

BMC psychiatry
BACKGROUND: Suicidal behaviors, which may lead to death (suicide) or survival (suicide attempt), are influenced by various factors. Identifying the specific risk factors for suicidal behavior mortality is critical for improving prevention strategies ...

Development and Validation of a Prediction Model for Co-Occurring Moderate-to-Severe Anxiety Symptoms in First-Episode and Drug Naïve Patients With Major Depressive Disorder.

Depression and anxiety
Moderate-to-severe anxiety symptoms are severe and common in patients with major depressive disorder (MDD) and have a significant impact on MDD patients and their families. The main objective of this study was to develop a risk prediction model for ...

Prediction of Suicidal Thoughts and Suicide Attempts in People Who Gamble Based on Biological-Psychological-Social Variables: A Machine Learning Study.

The Psychiatric quarterly
Recent research has shown that people who gamble are more likely to have suicidal thoughts and attempts compared to the general population. Despite the advancements made, no study to date has predicted suicide risk factors in people who gamble using ...