Aortic stenosis (AS) affects about 1.5 million people in the United States and is associated with a 5-year survival rate of 20% if untreated. In these patients, aortic valve replacement is performed to restore adequate hemodynamics and alleviate symp...
This work was aimed to explore the role of CT angiography information provided by deep learning algorithm in the diagnosis and complications of the disease focusing on congenital aortic valve disease and severe aortic valve stenosis. 120 patients who...
Cerebrovascular events (CVE) are among the most feared complications of transcatheter aortic valve replacement (TAVR). CVE appear difficult to predict due to their multifactorial origin incompletely explained by clinical predictors. We aimed to build...
Pacing and clinical electrophysiology : PACE
Jan 28, 2021
BACKGROUND: An accurate assessment of permanent pacemaker implantation (PPI) risk following transcatheter aortic valve replacement (TAVR) is important for clinical decision making. The aims of this study were to investigate the significance and utili...
Semisupervised machine-learning methods are able to learn from fewer labeled patient data. We illustrate the potential use of a semisupervised automated machine-learning (AutoML) pipeline for phenotyping patients who underwent transcatheter aortic va...
BACKGROUND: This study evaluated the performance of a machine learning (ML) algorithm in predicting outcomes of surgical aortic valve replacement (SAVR).
Clinical research in cardiology : official journal of the German Cardiac Society
Jun 24, 2020
BACKGROUND: Currently, patient selection in TAVI is based upon a multidisciplinary heart team assessment of patient comorbidities and surgical risk stratification. In an era of increasing need for precision medicine and quickly expanding TAVI indicat...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.