AIMC Topic: Triticum

Clear Filters Showing 21 to 30 of 81 articles

Sága, a Deep Learning Spectral Analysis Tool for Fungal Detection in Grains-A Case Study to Detect Fusarium in Winter Wheat.

Toxins
Fusarium head blight (FHB) is a plant disease caused by various species of the fungus. One of the major concerns associated with spp. is their ability to produce mycotoxins. Mycotoxin contamination in small grain cereals is a risk to human and anim...

Contribution assessment and accumulation prediction of heavy metals in wheat grain in a smelting-affected area using machine learning methods.

The Science of the total environment
Due to the diverse controlling factors and their uneven spatial distribution, especially atmospheric deposition from smelters, assessing and predicting the accumulation of heavy metals (HM) in crops across smelting-affected areas becomes challenging....

Using VIS-NIR hyperspectral imaging and deep learning for non-destructive high-throughput quantification and visualization of nutrients in wheat grains.

Food chemistry
High-throughput and low-cost quantification of the nutrient content in crop grains is crucial for food processing and nutritional research. However, traditional methods are time-consuming and destructive. A high-throughput and low-cost method of quan...

Uptake of zinc from the soil to the wheat grain: Nonlinear process prediction based on artificial neural network and geochemical data.

The Science of the total environment
Trace elements in plants primarily derive from soils, subsequently influencing human health through the food chain. Therefore, it is essential to understand the relationship of trace elements between plants and soils. Since trace elements from soils ...

Integrating genomics, phenomics, and deep learning improves the predictive ability for Fusarium head blight-related traits in winter wheat.

The plant genome
Fusarium head blight (FHB) remains one of the most destructive diseases of wheat (Triticum aestivum L.), causing considerable losses in yield and end-use quality. Phenotyping of FHB resistance traits, Fusarium-damaged kernels (FDK), and deoxynivaleno...

Comparative analysis of different Karnal bunt disease prediction models developed by machine learning techniques for Punjab conditions.

International journal of biometeorology
Timely prediction of pathogen is important key factor to reduce the quality and yield losses. Wheat is major crop in northern part of India. In Punjab, wheat face challenge by different diseases so the study was conducted for two locations viz. Ludhi...

TrG2P: A transfer-learning-based tool integrating multi-trait data for accurate prediction of crop yield.

Plant communications
Yield prediction is the primary goal of genomic selection (GS)-assisted crop breeding. Because yield is a complex quantitative trait, making predictions from genotypic data is challenging. Transfer learning can produce an effective model for a target...

Multimodal deep learning-based drought monitoring research for winter wheat during critical growth stages.

PloS one
Wheat is a major grain crop in China, accounting for one-fifth of the national grain production. Drought stress severely affects the normal growth and development of wheat, leading to total crop failure, reduced yields, and quality. To address the la...

Estimation of wheat protein content and wet gluten content based on fusion of hyperspectral and RGB sensors using machine learning algorithms.

Food chemistry
The protein content (PC) and wet gluten content (WGC) are crucial indicators determining the quality of wheat, playing a pivotal role in evaluating processing and baking performance. Original reflectance (OR), wavelet feature (WF), and color index (C...

Precision in wheat flour classification: Harnessing the power of deep learning and two-dimensional correlation spectrum (2DCOS).

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
Wheat flour is a ubiquitous food ingredient, yet discerning its various types can prove challenging. A practical approach for identifying wheat flour types involves analyzing one-dimensional near-infrared spectroscopy (NIRS) data. This paper introduc...