AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Uncertainty

Showing 71 to 80 of 665 articles

Clear Filters

Quantifying and visualising uncertainty in deep learning-based segmentation for radiation therapy treatment planning: What do radiation oncologists and therapists want?

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: During the ESTRO 2023 physics workshop on "AI for the fully automated radiotherapy treatment chain", the topic of deep learning (DL) segmentation was discussed. Despite its widespread use in radiotherapy, the time needed to ev...

Data-centric challenges with the application and adoption of artificial intelligence for drug discovery.

Expert opinion on drug discovery
INTRODUCTION: Artificial intelligence (AI) is exhibiting tremendous potential to reduce the massive costs and long timescales of drug discovery. There are however important challenges currently limiting the impact and scope of AI models.

Deep evidential learning for radiotherapy dose prediction.

Computers in biology and medicine
BACKGROUND: As we navigate towards integrating deep learning methods in the real clinic, a safety concern lies in whether and how the model can express its own uncertainty when making predictions. In this work, we present a novel application of an un...

Deep learning-based statistical robustness evaluation of intensity-modulated proton therapy for head and neck cancer.

Physics in medicine and biology
. Previous methods for robustness evaluation rely on dose calculation for a number of uncertainty scenarios, which either fails to provide statistical meaning when the number is too small (e.g., ∼8) or becomes unfeasible in daily clinical practice wh...

Artificial intelligence uncertainty quantification in radiotherapy applications - A scoping review.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND/PURPOSE: The use of artificial intelligence (AI) in radiotherapy (RT) is expanding rapidly. However, there exists a notable lack of clinician trust in AI models, underscoring the need for effective uncertainty quantification (UQ) methods. ...

Reconfiguration of uncertainty: Introducing AI for prediction of mortality at the emergency department.

Social science & medicine (1982)
The promise behind many advanced digital technologies in healthcare is to provide novel and accurate information, aiding medical experts to navigate and, ultimately, decrease uncertainty in their clinical work. However, sociological studies have star...

Uncertainty Estimation and Out-of-Distribution Detection for Deep Learning-Based Image Reconstruction Using the Local Lipschitz.

IEEE journal of biomedical and health informatics
Accurate image reconstruction is at the heart of diagnostics in medical imaging. Supervised deep learning-based approaches have been investigated for solving inverse problems including image reconstruction. However, these trained models encounter uns...

Overtrust in AI Recommendations About Whether or Not to Kill: Evidence from Two Human-Robot Interaction Studies.

Scientific reports
This research explores prospective determinants of trust in the recommendations of artificial agents regarding decisions to kill, using a novel visual challenge paradigm simulating threat-identification (enemy combatants vs. civilians) under uncertai...

Deep learning with uncertainty estimation for automatic tumor segmentation in PET/CT of head and neck cancers: impact of model complexity, image processing and augmentation.

Biomedical physics & engineering express
Target volumes for radiotherapy are usually contoured manually, which can be time-consuming and prone to inter- and intra-observer variability. Automatic contouring by convolutional neural networks (CNN) can be fast and consistent but may produce unr...

Economical hybrid novelty detection leveraging global aleatoric semantic uncertainty for enhanced MRI-based ACL tear diagnosis.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
This study presents an innovative hybrid deep learning (DL) framework that reformulates the sagittal MRI-based anterior cruciate ligament (ACL) tear classification task as a novelty detection problem to tackle class imbalance. We introduce a highly d...