Computed tomography (CT) is the method of choice for diagnosing ureteral stones - kidney stones that obstruct the ureter. The purpose of this study is to develop a computer aided detection (CAD) algorithm for identifying a ureteral stone in thin slic...
PURPOSE: The aim of this study was to develop and validate a decision support model using a machine learning algorithm to predict treatment success after single session shock wave lithotripsy in ureteral stone cases.
Journal of medical imaging and radiation oncology
30720244
INTRODUCTION: Natural language processing (NLP) is an emerging tool which has the ability to automate data extraction from large volumes of unstructured text. One of the main described uses of NLP in radiology is cohort building for epidemiological s...
In this study, a prototype artificial neural network model (ANN) was used to estimate the stone passage rate and to determine the effectivity of predictive factors on this rate in patients with ureteral stones. The retrospective study included a tota...
The objectives were to develop and validate a Convolutional Neural Network (CNN) using local features for differentiating distal ureteral stones from pelvic phleboliths, compare the CNN method with a semi-quantitative method and with radiologists' as...
BACKGROUND: The aims of this study were to determine the predictive value of decision support analysis for the shock wave lithotripsy (SWL) success rate and to analyze the data obtained from patients who underwent SWL to assess the factors influencin...
Computational and mathematical methods in medicine
34745329
OBJECTIVE: To explore the image enhancement model based on deep learning on the effect of ureteroscopy with double J tube placement and drainage on ureteral stones during pregnancy. We compare the clinical effect of ureteroscopy with double J tube pl...