AIMC Topic: Voice

Clear Filters Showing 11 to 20 of 89 articles

Machine learning-assisted wearable sensing systems for speech recognition and interaction.

Nature communications
The human voice stands out for its rich information transmission capabilities. However, voice communication is susceptible to interference from noisy environments and obstacles. Here, we propose a wearable wireless flexible skin-attached acoustic sen...

AI-determined similarity increases likability and trustworthiness of human voices.

PloS one
Modern artificial intelligence (AI) technology is capable of generating human sounding voices that could be used to deceive recipients in various contexts (e.g., deep fakes). Given the increasing accessibility of this technology and its potential soc...

Pre-trained convolutional neural networks identify Parkinson's disease from spectrogram images of voice samples.

Scientific reports
Machine learning approaches including deep learning models have shown promising performance in the automatic detection of Parkinson's disease. These approaches rely on different types of data with voice recordings being the most used due to the conve...

Evaluation of an AI-Based Voice Biomarker Tool to Detect Signals Consistent With Moderate to Severe Depression.

Annals of family medicine
PURPOSE: Mental health screening is recommended by the US Preventive Services Task Force for all patients in areas where treatment options are available. Still, it is estimated that only 4% of primary care patients are screened for depression. The go...

Development and Validation of a Machine Learning Method Using Vocal Biomarkers for Identifying Frailty in Community-Dwelling Older Adults: Cross-Sectional Study.

JMIR medical informatics
BACKGROUND: The two most commonly used methods to identify frailty are the frailty phenotype and the frailty index. However, both methods have limitations in clinical application. In addition, methods for measuring frailty have not yet been standardi...

Endpoint-aware audio-visual speech enhancement utilizing dynamic weight modulation based on SNR estimation.

Neural networks : the official journal of the International Neural Network Society
Integrating visual features has been proven effective for deep learning-based speech quality enhancement, particularly in highly noisy environments. However, these models may suffer from redundant information, resulting in performance deterioration w...

Artificial intelligence empowered voice generation for amyotrophic lateral sclerosis patients.

Scientific reports
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that can result in a progressive loss of speech due to bulbar dysfunction, which can have significant negative impact on the patient's mental well-being. Alternative Augmentative Comm...

Voice Analysis in Dogs with Deep Learning: Development of a Fully Automatic Voice Analysis System for Bioacoustics Studies.

Sensors (Basel, Switzerland)
Extracting behavioral information from animal sounds has long been a focus of research in bioacoustics, as sound-derived data are crucial for understanding animal behavior and environmental interactions. Traditional methods, which involve manual revi...

Transformer-based transfer learning on self-reported voice recordings for Parkinson's disease diagnosis.

Scientific reports
Deep learning (DL) techniques are becoming more popular for diagnosing Parkinson's disease (PD) because they offer non-invasive and easily accessible tools. By using advanced data analysis, these methods improve early detection and diagnosis, which i...

How to identify patient perception of AI voice robots in the follow-up scenario? A multimodal identity perception method based on deep learning.

Journal of biomedical informatics
OBJECTIVES: Post-discharge follow-up stands as a critical component of post-diagnosis management, and the constraints of healthcare resources impede comprehensive manual follow-up. However, patients are less cooperative with AI follow-up calls or may...