AI Medical Compendium

Explore the latest research on artificial intelligence and machine learning in medicine.

Showing 151 to 160 of 1040 articles

Clear Filters

Adversarial Exposure Attack on Diabetic Retinopathy Imagery Grading.

IEEE journal of biomedical and health informatics
Diabetic Retinopathy (DR) is a leading cause of vision loss around the world. To help diagnose it, numerous cutting-edge works have built powerful deep neural networks (DNNs) to automatically grade DR via retinal fundus images (RFIs). However, RFIs a...

Fuzzy Synchronization Likelihood Graph in Deep Neural Networks for Human Motion Time Series Analysis.

IEEE journal of biomedical and health informatics
Variable interactivity is crucial in biological multivariate time series analysis. This research suggests using graph structures to represent such interactions for more explainable decision-making processes. However, measuring the variable interactio...

Spatial Craving Patterns in Marijuana Users: Insights From fMRI Brain Connectivity Analysis With High-Order Graph Attention Neural Networks.

IEEE journal of biomedical and health informatics
The excessive consumption of marijuana can induce substantial psychological and social consequences. In this investigation, we propose an elucidative framework termed high-order graph attention neural networks (HOGANN) for the classification of Marij...

Self-Supervised Contrastive Learning on Attribute and Topology Graphs for Predicting Relationships Among lncRNAs, miRNAs and Diseases.

IEEE journal of biomedical and health informatics
Exploring associations between long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and diseases is crucial for disease prevention, diagnosis and treatment. While determining these relationships experimentally is resource-intensive and time-consuming, ...

TCNN-KAN: Optimized CNN by Kolmogorov-Arnold Network and Pruning Techniques for sEMG Gesture Recognition.

IEEE journal of biomedical and health informatics
Surface electromyography (sEMG) is a non-invasive technique that records the electrical signals generated by muscle activity. sEMG signals are widely used in the field of biomedical and health informatics for diagnosing and monitoring neuromuscular d...

MFRC-Net: Multi-Scale Feature Residual Convolutional Neural Network for Motor Imagery Decoding.

IEEE journal of biomedical and health informatics
Motor imagery (MI) decoding is the basis of external device control via electroencephalogram (EEG). However, the majority of studies prioritize enhancing the accuracy of decoding methods, often overlooking the magnitude and computational resource dem...

Melanoma Breslow Thickness Classification Using Ensemble-Based Knowledge Distillation With Semi-Supervised Convolutional Neural Networks.

IEEE journal of biomedical and health informatics
Melanoma is considered a global public health challenge and is responsible for more than 90% deaths related to skin cancer. Although the diagnosis of early melanoma is the main goal of dermoscopy, the discrimination between dermoscopic images of in s...

Harmonic Wavelet Neural Network for Discovering Neuropathological Propagation Patterns in Alzheimer's Disease.

IEEE journal of biomedical and health informatics
Emerging researchindicates that the degenerative biomarkers associated with Alzheimer's disease (AD) exhibit a non-random distribution within the cerebral cortex, instead following the structural brain network. The alterations in brain networks occur...

Residual Self-Calibrated Network With Multi-Scale Channel Attention for Accurate EOG-Based Eye Movement Classification.

IEEE journal of biomedical and health informatics
Recently, Electrooculography-based Human-Computer Interaction (EOG-HCI) technology has gained widespread attention in industrial areas, including assistive robots, augmented reality in gaming, etc. However, as the fundamental step of EOG-HCI, accurat...

Frailty Modeling Using Machine Learning Methodologies: A Systematic Review With Discussions on Outstanding Questions.

IEEE journal of biomedical and health informatics
Studying frailty is crucial for enhancing the health and quality of life among older adults, refining healthcare delivery methods, and tackling the obstacles linked to an aging demographic. Approaches to frailty modeling often utilise simple analytic...