AI Medical Compendium Journal:
BMC emergency medicine

Showing 1 to 10 of 15 articles

Improving prediction accuracy of hospital arrival vital signs using a multi-output machine learning model: a retrospective study of JSAS-registry data.

BMC emergency medicine
BACKGROUND: Critically ill patients can deteriorate rapidly; therefore, prompt prehospital interventions and seamless transition to in-hospital care upon arrival are crucial for improving survival. In Japan, helicopter emergency medical services (HEM...

Performance of machine learning models in predicting difficult laryngoscopy in the emergency department: a single-centre retrospective study comparing with conventional regression method.

BMC emergency medicine
BACKGROUND: Emergency endotracheal intubation is a critical skill for managing airway emergencies in the emergency department (ED). Accurate prediction of difficult laryngoscopy is essential for improving first-attempt success, minimizing complicatio...

Enhancing trauma triage in low-resource settings using machine learning: a performance comparison with the Kampala Trauma Score.

BMC emergency medicine
BACKGROUND: Traumatic injuries are a leading cause of morbidity and mortality globally, with a disproportionate impact on populations in low- and middle-income countries (LMICs). The Kampala Trauma Score (KTS) is frequently used for triage in these s...

Predicting emergency department admissions using a machine-learning algorithm: a proof of concept with retrospective study.

BMC emergency medicine
INTRODUCTION: Overcrowding in emergency departments (ED) is a major public health issue, leading to increased workload and exhaustion for the teams, resulting poor outcomes. It seems interesting to be able to predict the admissions of patients in the...

Advancing a machine learning-based decision support tool for pre-hospital assessment of dyspnoea by emergency medical service clinicians: a retrospective observational study.

BMC emergency medicine
BACKGROUND: In Sweden with about 10 million inhabitants, there are about one million primary ambulance missions every year. Among them, around 10% are assessed by Emergency Medical Service (EMS) clinicians with the primary symptom of dyspnoea. The ri...

Using machine learning and natural language processing in triage for prediction of clinical disposition in the emergency department.

BMC emergency medicine
BACKGROUND: Accurate triage is required for efficient allocation of resources and to decrease patients' length of stay. Triage decisions are often subjective and vary by provider, leading to patients being over-triaged or under-triaged. This study de...

Improving triage performance in emergency departments using machine learning and natural language processing: a systematic review.

BMC emergency medicine
BACKGROUND: In Emergency Departments (EDs), triage is crucial for determining patient severity and prioritizing care, typically using the Manchester Triage Scale (MTS). Traditional triage systems, reliant on human judgment, are prone to under-triage ...

Predicting severity of acute appendicitis with machine learning methods: a simple and promising approach for clinicians.

BMC emergency medicine
BACKGROUNDS: Acute Appendicitis (AA) is one of the most common surgical emergencies worldwide. This study aims to investigate the predictive performances of 6 different Machine Learning (ML) algorithms for simple and complicated AA.

Machine learning models for predicting unscheduled return visits to an emergency department: a scoping review.

BMC emergency medicine
BACKGROUND: Unscheduled return visits (URVs) to emergency departments (EDs) are used to assess the quality of care in EDs. Machine learning (ML) models can incorporate a wide range of complex predictors to identify high-risk patients and reduce error...

Prediction of prognosis in elderly patients with sepsis based on machine learning (random survival forest).

BMC emergency medicine
BACKGROUND: Elderly patients with sepsis have many comorbidities, and the clinical reaction is not obvious. Thus, clinical treatment is difficult. We planned to use the laboratory test results and comorbidities of elderly patients with sepsis from a ...