Electroencephalography signals are frequently used for various Brain-Computer interface (BCI) tasks. While deep learning (DL) techniques have shown promising results, they are hindered by the substantial data requirements. By leveraging data from mul...
. Spinal cord stimulation (SCS) is a well-established treatment for managing certain chronic pain conditions. More recently, it has also garnered attention as a means of modulating neural activity to restore lost autonomic or sensory-motor function. ...
. This study aims to develop and validate an end-to-end software platform, PyHFO, that streamlines the application of deep learning (DL) methodologies in detecting neurophysiological biomarkers for epileptogenic zones from EEG recordings.. We introdu...
This study develops a deep learning (DL) method for fast auditory attention decoding (AAD) using electroencephalography (EEG) from listeners with hearing impairment (HI). It addresses three classification tasks: differentiating noise from speech-in-n...
Aiming for the research on the brain-computer interface (BCI), it is crucial to design a MI-EEG recognition model, possessing a high classification accuracy and strong generalization ability, and not relying on a large number of labeled training samp...
Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder in children. While numerous intelligent methods are applied for its subjective diagnosis, they seldom consider the consistency problem of ADHD biomarkers. In p...
. Our goal is to decode firing patterns of single neurons in the left ventralis intermediate nucleus (Vim) of the thalamus, related to speech production, perception, and imagery. For realistic speech brain-machine interfaces (BMIs), we aim to charact...
. Machine learning (ML) models have opened up enormous opportunities in the field of brain-computer Interfaces (BCIs). Despite their great success, they usually face severe limitations when they are employed in real-life applications outside a contro...
. The instability of the EEG acquisition devices may lead to information loss in the channels or frequency bands of the collected EEG. This phenomenon may be ignored in available models, which leads to the overfitting and low generalization of the mo...
. The incidence of stroke rising, leading to an increased demand for rehabilitation services. Literature has consistently shown that early and intensive rehabilitation is beneficial for stroke patients. Robot-assisted devices have been extensively st...