OBJECTIVE: In the management of the aortic aneurysm, 4D flow magnetic resonance Imaging provides valuable information for the computation of new biomarkers using computational fluid dynamics (CFD). However, accurate segmentation of the aorta is requi...
OBJECTIVE: We propose a deep learning-based fully automatic right ventricle (RV) segmentation technique that targets radially reconstructed long-axis (RLA) images of the center of the RV region in routine short axis (SA) cardiovascular magnetic reson...
There has been an increasing role of magnetic resonance imaging (MRI) in the management of prostate cancer. MRI already plays an essential role in the detection and staging, with the introduction of functional MRI sequences. Recent advancements in ra...
BACKGROUND: There is increasing appreciation of the association of obesity beyond co-morbidities, such as cancers, Type 2 diabetes, hypertension, and stroke to also impact upon the muscle to give rise to sarcopenic obesity. Phenotypic knowledge of ob...
INTRODUCTION: The success of parallel Magnetic Resonance Imaging algorithms like SENSitivity Encoding (SENSE) depends on an accurate estimation of the receiver coil sensitivity maps. Deep learning-based receiver coil sensitivity map estimation depend...
OBJECTIVE: The aim of this paper is to investigate the use of fully convolutional neural networks (FCNNs) to segment scar tissue in the left ventricle from cardiac magnetic resonance with late gadolinium enhancement (CMR-LGE) images.
OBJECTIVES: To develop and validate a machine learning based automated segmentation method that jointly analyzes the four contrasts provided by Dixon MRI technique for improved thigh composition segmentation accuracy.