BACKGROUND: Gadolinium-based contrast agents are commonly used in brain magnetic resonance imaging (MRI), however, they cannot be used by patients with allergic reactions or poor renal function. For long-term follow-up patients, gadolinium deposition...
BACKGROUND: A deep learning (DL) model that automatically detects cardiac pathologies on cardiac MRI may help streamline the diagnostic workflow. To develop a DL model to detect cardiac pathologies on cardiac MRI T1-mapping and late gadolinium phase ...
BACKGROUND AND PURPOSE: Recent developments in deep learning methods offer a potential solution to the need for alternative imaging methods due to concerns about the toxicity of gadolinium-based contrast agents. The purpose of the study was to synthe...
BACKGROUND: The presence of infarction in patients with unrecognized myocardial infarction (UMI) is a critical feature in predicting adverse cardiac events. This study aimed to compare the detection rate of UMI using conventional and deep learning re...
OBJECTIVES: Dark-blood late gadolinium enhancement (DB-LGE) cardiac magnetic resonance has been proposed as an alternative to standard white-blood LGE (WB-LGE) imaging protocols to enhance scar-to-blood contrast without compromising scar-to-myocardiu...
PURPOSE: To verify the usefulness of a deep learning model for determining the presence or absence of contrast-enhanced myocardium in late gadolinium-enhancement images in cardiac MRI.
BACKGROUND: Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) is a standard technique for diagnosing myocardial infarction (MI), which, however, poses risks due to gadolinium contrast usage. Techniques enabling MI assessment based on...
BACKGROUND: Late gadolinium enhancement (LGE) on cardiac magnetic resonance (CMR) in hypertrophic cardiomyopathy (HCM) typically represents myocardial fibrosis and may lead to fatal ventricular arrhythmias. However, CMR is resource-intensive and some...