Conventional approaches to material decomposition in spectral CT face challenges related to precise algorithm calibration across imaged conditions and low signal quality caused by variable object size and reduced dose. In this proof-of-principle stud...
BACKGROUND: Late Gadolinium-enhancement in cardiac magnetic resonance imaging (LGE-CMR) is the gold standard for assessing myocardial infarction (MI) size. Texture-based probability mapping (TPM) is a novel machine learning-based analysis of LGE imag...
BACKGROUND: Late gadolinium enhancement (LGE) on cardiac magnetic resonance (CMR) in hypertrophic cardiomyopathy (HCM) typically represents myocardial fibrosis and may lead to fatal ventricular arrhythmias. However, CMR is resource-intensive and some...
OBJECTIVES: In the context of growing safety concerns regarding the use of gadolinium-based contrast agents in contrast-enhanced MRI, there is a need for dose reduction without compromising diagnostic accuracy. A deep learning (DL) method is proposed...
BACKGROUND: Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) is a standard technique for diagnosing myocardial infarction (MI), which, however, poses risks due to gadolinium contrast usage. Techniques enabling MI assessment based on...
PURPOSE: To verify the usefulness of a deep learning model for determining the presence or absence of contrast-enhanced myocardium in late gadolinium-enhancement images in cardiac MRI.
BACKGROUND: The presence of infarction in patients with unrecognized myocardial infarction (UMI) is a critical feature in predicting adverse cardiac events. This study aimed to compare the detection rate of UMI using conventional and deep learning re...
OBJECTIVES: Dark-blood late gadolinium enhancement (DB-LGE) cardiac magnetic resonance has been proposed as an alternative to standard white-blood LGE (WB-LGE) imaging protocols to enhance scar-to-blood contrast without compromising scar-to-myocardiu...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.