AIMC Topic: Blood Flow Velocity

Clear Filters Showing 1 to 10 of 70 articles

Deep learning based automated left atrial segmentation and flow quantification of real time phase contrast MRI in patients with atrial fibrillation.

The international journal of cardiovascular imaging
Real time 2D phase contrast (RTPC) MRI is useful for flow quantification in atrial fibrillation (AF) patients, but data analysis requires time-consuming anatomical contouring for many cardiac time frames. Our goal was to develop a convolutional neura...

Role of physics-informed constraints in real-time estimation of 3D vascular fluid dynamics using multi-case neural network.

Computers in biology and medicine
Numerical simulations of fluid dynamics in tube-like structures are important to biomedical research to model flow in blood vessels and airways. It is further useful to some clinical applications, such as predicting arterial fractional flow reserves,...

3D velocity and pressure field reconstruction in the cardiac left ventricle via physics informed neural network from echocardiography guided by 3D color Doppler.

Computer methods and programs in biomedicine
Fluid dynamics of the heart chamber can provide critical biological cues for understanding cardiac health and disease and have the potential for supporting diagnosis and prognosis. However, directly acquiring fluid dynamics information from clinical ...

High-resolution hemodynamic estimation from ultrafast ultrasound image velocimetry using a physics-informed neural network.

Physics in medicine and biology
Estimating the high-resolution (HR) blood flow velocity and pressure fields for the diagnosis and treatment of vascular diseases remains challenging.. In this study, a physics-informed neural network (PINN) with a refined mapping capability was combi...

Pinning down the accuracy of physics-informed neural networks under laminar and turbulent-like aortic blood flow conditions.

Computers in biology and medicine
BACKGROUND: Physics-informed neural networks (PINNs) are increasingly being used to model cardiovascular blood flow. The accuracy of PINNs is dependent on flow complexity and could deteriorate in the presence of highly-dynamical blood flow conditions...

Predicting high-flow arteriovenous fistulas and cardiac outcomes in hemodialysis patients.

Journal of vascular surgery
BACKGROUND: Heart failure is common in patients receiving hemodialysis. A high-flow arteriovenous fistula (AVF) may represent a modifiable risk factor for heart failure and death. Currently, no tools exist to assess the risk of developing a high-flow...

Physics-Guided Neural Networks for Intraventricular Vector Flow Mapping.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Intraventricular vector flow mapping (iVFM) seeks to enhance and quantify color Doppler in cardiac imaging. In this study, we propose novel alternatives to the traditional iVFM optimization scheme using physics-informed neural networks (PINNs) and a ...

Physics-Informed Graph Neural Networks to solve 1-D equations of blood flow.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Computational models of hemodynamics can contribute to optimizing surgical plans, and improve our understanding of cardiovascular diseases. Recently, machine learning methods have become essential to reduce the computational...

A comparison of machine learning methods for recovering noisy and missing 4D flow MRI data.

International journal for numerical methods in biomedical engineering
Experimental blood flow measurement techniques are invaluable for a better understanding of cardiovascular disease formation, progression, and treatment. One of the emerging methods is time-resolved three-dimensional phase-contrast magnetic resonance...