PURPOSE: Multiparametric arterial spin labeling (MP-ASL) can quantify cerebral blood flow (CBF) and arterial cerebral blood volume (CBV). However, its accuracy is compromised owing to its intrinsically low SNR, necessitating complex and time-consumin...
PURPOSE: Tricuspid valve flow velocities are challenging to measure with cardiovascular MR, as the rapidly moving valvular plane prohibits direct flow evaluation, but they are vitally important to diastolic function evaluation. We developed an automa...
PURPOSE: We present SCAMPI (Sparsity Constrained Application of deep Magnetic resonance Priors for Image reconstruction), an untrained deep Neural Network for MRI reconstruction without previous training on datasets. It expands the Deep Image Prior a...
PURPOSE: To introduce a novel deep model-based architecture (DMBA), SPICER, that uses pairs of noisy and undersampled k-space measurements of the same object to jointly train a model for MRI reconstruction and automatic coil sensitivity estimation.
PURPOSE: To investigate whether parallel imaging-imposed geometric coil constraints can be relaxed when using a deep learning (DL)-based image reconstruction method as opposed to a traditional non-DL method.
PURPOSE: To propose the simulation-based physics-informed neural network for deconvolution of dynamic susceptibility contrast (DSC) MRI (SPINNED) as an alternative for more robust and accurate deconvolution compared to existing methods.
Deep learning (DL) has emerged as a leading approach in accelerating MRI. It employs deep neural networks to extract knowledge from available datasets and then applies the trained networks to reconstruct accurate images from limited measurements. Unl...
PURPOSE: To develop a highly accelerated CEST Z-spectral acquisition method using a specifically-designed k-space sampling pattern and corresponding deep-learning-based reconstruction.
PURPOSE: To develop and evaluate a deep learning (DL) -based rapid image reconstruction and motion correction technique for high-resolution Cartesian first-pass myocardial perfusion imaging at 3T with whole-heart coverage for both single-slice (SS) a...