PURPOSE: Lung nodules that are missed by radiologists as well as by computer-aided detection (CAD) systems mostly overlap with ribs and clavicles. Removing the bony structures would result in better visualization of undetectable lesions. Our purpose ...
PURPOSE: The purpose of this study is to introduce and evaluate the mixed structure regularization (MSR) approach for a deep sparse autoencoder aimed at unsupervised abnormality detection in medical images. Unsupervised abnormality detection based on...
PURPOSE: Automatic segmentation of organs-at-risk (OARs) is a key step in radiation treatment planning to reduce human efforts and bias. Deep convolutional neural networks (DCNN) have shown great success in many medical image segmentation application...
OBJECTIVES: The aim of this study was to develop a fully automated deep learning approach for identification of the pectoral muscle on mediolateral oblique (MLO) view mammograms and evaluate its performance in comparison to our previously developed t...
PURPOSE: Ventilation images can be derived from four-dimensional computed tomography (4DCT) by analyzing the change in HU values and deformable vector fields between different respiration phases of computed tomography (CT). As deformable image regist...
The recent explosion in machine learning efforts in the quality assurance (QA) space has produced a variety of proofs-of-concept many with promising results. Expected outcomes of model implementation include improvements in planning time, plan qualit...
PURPOSE: Developing automated methods to identify task-driven quality assurance (QA) procedures is key toward increasing safety, efficacy, and efficiency. We investigate the use of machine learning (ML) methods for possible visualization, automation,...
OBJECTIVES: To develop a U-Net-based deep learning approach (U-DL) for bladder segmentation in computed tomography urography (CTU) as a part of a computer-assisted bladder cancer detection and treatment response assessment pipeline.
PURPOSE: Reliable automated segmentation of the prostate is indispensable for image-guided prostate interventions. However, the segmentation task is challenging due to inhomogeneous intensity distributions, variation in prostate anatomy, among other ...
PURPOSE: In recent years, health risks concerning high-dose x-ray radiation have become a major concern in dental computed tomography (CT) examinations. Therefore, adopting low-dose computed tomography (LDCT) technology has become a major focus in th...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.