OBJECTIVE: Evaluation of intestinal viability is essential in surgical decision-making in patients with acute intestinal ischemia. There has been no substantial change in the mortality rate (30%-93%) of patients with acute mesenteric ischemia (AMI) s...
OBJECTIVE: Obstetricians mainly use ultrasound imaging for fetal biometric measurements. However, such measurements are cumbersome. Hence, there is urgent need for automatic biometric estimation. Automated analysis of ultrasound images is complicated...
OBJECTIVES: We designed an automated algorithm to classify short electrocardiogram (ECG) strips into four categories: normal rhythm, atrial fibrillation, noisy segment, or other rhythm disturbances.
OBJECTIVE: The electrocardiogram (ECG) provides an effective, non-invasive approach for clinical diagnosis in patients with cardiac diseases such as atrial fibrillation (AF). AF is the most common cardiac rhythm disturbance and affects ~2% of the gen...
UNLABELLED: The automated detection of arrhythmia in a Holter ECG signal is a challenging task due to its complex clinical content and data quantity. It is also challenging due to the fact that Holter ECG is usually affected by noise. Such noise may ...
OBJECTIVE: Use of wearable ECG devices for arrhythmia screening is limited due to poor signal quality, small number of leads and short records, leading to incorrect recognition of pathological events. This paper introduces a novel approach to classif...
OBJECTIVE: The prevalence of atrial fibrillation (AF) in the general population is 0.5%-1%. As AF is the most common sustained cardiac arrhythmia that is associated with an increased morbidity and mortality, its timely diagnosis is clinically desirab...
OBJECTIVE: Fluctuations in heart rate are intimately related to changes in the physiological state of the organism. We exploit this relationship by classifying a human participant's wake/sleep status using his instantaneous heart rate (IHR) series.
OBJECTIVE: Participation in a physical therapy program is considered one of the greatest predictors of successful conservative management of common shoulder disorders. However, adherence to these protocols is often poor and typically worse for unsupe...
OBJECTIVE: In this paper, a support vector machine (SVM) approach using statistical features, P wave absence, spectrum features, and length-adaptive entropy are presented to classify ECG rhythms as four types: normal rhythm, atrial fibrillation (AF),...