AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Action Potentials

Showing 31 to 40 of 502 articles

Clear Filters

Free-space optical spiking neural network.

PloS one
Neuromorphic engineering has emerged as a promising avenue for developing brain-inspired computational systems. However, conventional electronic AI-based processors often encounter challenges related to processing speed and thermal dissipation. As an...

Deep Learning-Based Ion Channel Kinetics Analysis for Automated Patch Clamp Recording.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
The patch clamp technique is a fundamental tool for investigating ion channel dynamics and electrophysiological properties. This study proposes the first artificial intelligence framework for characterizing multiple ion channel kinetics of whole-cell...

A robust Parkinson's disease detection model based on time-varying synaptic efficacy function in spiking neural network.

BMC neurology
Parkinson's disease (PD) is a neurodegenerative disease affecting millions of people around the world. Conventional PD detection algorithms are generally based on first and second-generation artificial neural network (ANN) models which consume high e...

Low-power artificial neuron networks with enhanced synaptic functionality using dual transistor and dual memristor.

PloS one
Artificial neurons with bio-inspired firing patterns have the potential to significantly improve the performance of neural network computing. The most significant component of an artificial neuron circuit is a large amount of energy consumption. Rece...

Towards parameter-free attentional spiking neural networks.

Neural networks : the official journal of the International Neural Network Society
Brain-inspired spiking neural networks (SNNs) are increasingly explored for their potential in spatiotemporal information modeling and energy efficiency on emerging neuromorphic hardware. Recent works incorporate attentional modules into SNNs, greatl...

Intelligent in-cell electrophysiology: Reconstructing intracellular action potentials using a physics-informed deep learning model trained on nanoelectrode array recordings.

Nature communications
Intracellular electrophysiology is essential in neuroscience, cardiology, and pharmacology for studying cells' electrical properties. Traditional methods like patch-clamp are precise but low-throughput and invasive. Nanoelectrode Arrays (NEAs) offer ...

CS-QCFS: Bridging the performance gap in ultra-low latency spiking neural networks.

Neural networks : the official journal of the International Neural Network Society
Spiking Neural Networks (SNNs) are at the forefront of computational neuroscience, emulating the nuanced dynamics of biological systems. In the realm of SNN training methods, the conversion from ANNs to SNNs has generated significant interest due to ...

Spatio-temporal transformers for decoding neural movement control.

Journal of neural engineering
. Deep learning tools applied to high-resolution neurophysiological data have significantly progressed, offering enhanced decoding, real-time processing, and readability for practical applications. However, the design of artificial neural networks to...

A multi-domain feature fusion epilepsy seizure detection method based on spike matching and PLV functional networks.

Journal of neural engineering
The identification of spikes, as a typical characteristic wave of epilepsy, is crucial for diagnosing and locating the epileptogenic region. The traditional seizure detection methods lack spike features and have low sample richness. This paper propos...

Toward a Free-Response Paradigm of Decision Making in Spiking Neural Networks.

Neural computation
Spiking neural networks (SNNs) have attracted significant interest in the development of brain-inspired computing systems due to their energy efficiency and similarities to biological information processing. In contrast to continuous-valued artificia...