AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Adolescent

Showing 161 to 170 of 2957 articles

Clear Filters

SleepECG-Net: Explainable Deep Learning Approach With ECG for Pediatric Sleep Apnea Diagnosis.

IEEE journal of biomedical and health informatics
Obstructive sleep apnea (OSA) in children is a prevalent and serious respiratory condition linked to cardiovascular morbidity. Polysomnography, the standard diagnostic approach, faces challenges in accessibility and complexity, leading to underdiagno...

Thessaly Graft Index: An Artificial Intelligence-Based Index for the Assessment of Graft Integrity in ACL-Reconstructed Knees.

The Journal of bone and joint surgery. American volume
BACKGROUND: Magnetic resonance imaging (MRI) has proven to be a valuable noninvasive tool to evaluate graft integrity after anterior cruciate ligament (ACL) reconstruction. However, MRI protocols and interpretation methodologies are quite diverse, pr...

Can muscle synergies shed light on the mechanisms underlying motor gains in response to robot-assisted gait training in children with cerebral palsy?

Journal of neuroengineering and rehabilitation
BACKGROUND: Children with cerebral palsy (CP) often experience gait impairments. Robot-assisted gait training (RGT) has been shown to have beneficial effects in this patient population. However, clinical outcomes of RGT vary substantially from patien...

Genome data based deep learning identified new genes predicting pharmacological treatment response of attention deficit hyperactivity disorder.

Translational psychiatry
Although the efficacy of pharmacy in the treatment of attention deficit/hyperactivity disorder (ADHD) has been well established, the lack of predictors of treatment response poses great challenges for personalized treatment. The current study employe...

Factors associated with underweight, overweight, and obesity in Chinese children aged 3-14 years using ensemble learning algorithms.

Journal of global health
BACKGROUND: Factors underlying the development of childhood underweight, overweight, and obesity are not fully understood. Traditional models have drawbacks in handling large-scale, high-dimensional, and nonlinear data. In this study, we aimed to ide...

Applying machine learning to ecological momentary assessment data to identify predictors of loss-of-control eating and overeating severity in adolescents: A preliminary investigation.

Appetite
OBJECTIVE: Several factors (e.g., interpersonal stress, affect) predict loss-of-control (LOC) eating and overeating in adolescents, but most past research has tested predictors separately. We applied machine learning to simultaneously evaluate multip...

Machine learning reveals sex differences in distinguishing between conduct-disordered and neurotypical youth based on emotion processing dysfunction.

BMC psychiatry
BACKGROUND: Theoretical models of conduct disorder (CD) highlight that deficits in emotion recognition, learning, and regulation play a pivotal role in CD etiology. With CD being more prevalent in boys than girls, various theories aim to explain this...

Machine Learning-Based Pediatric Early Warning Score: Patient Outcomes in a Pre- Versus Post-Implementation Study, 2019-2023.

Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies
OBJECTIVES: To describe the deployment of pediatric Calculated Assessment of Risk and Triage (pCART), a machine learning (ML) model to predict the risk of the direct ward to the ICU transfer within 12 hours, and the associated improved outcomes among...

Why do people resist AI-based autonomous cars?: Analyzing the impact of the risk perception paradigm and conditional value on public acceptance of autonomous vehicles.

PloS one
This study examines the factors that lead to the acceptance of AI-based autonomous vehicles. Despite the considerable importance of AI-based autonomous vehicles there has been a lack of analysis based on theoretical models and analysis that considers...

Ensemble learning to predict short birth interval among reproductive-age women in Ethiopia: evidence from EDHS 2016-2019.

BMC pregnancy and childbirth
BACKGROUND: A birth interval of less than 33 months was considered short, and in low- income countries like Ethiopia, a short birth interval is the primary cause of approximately 822 maternal deaths every day. Due to that this study aimed to predict ...