AIMC Topic: Alzheimer Disease

Clear Filters Showing 191 to 200 of 1008 articles

Machine Learning Driven by Magnetic Resonance Imaging for the Classification of Alzheimer Disease Progression: Systematic Review and Meta-Analysis.

JMIR aging
BACKGROUND: To diagnose Alzheimer disease (AD), individuals are classified according to the severity of their cognitive impairment. There are currently no specific causes or conditions for this disease.

Fusion of brain imaging genetic data for alzheimer's disease diagnosis and causal factors identification using multi-stream attention mechanisms and graph convolutional networks.

Neural networks : the official journal of the International Neural Network Society
Correctly diagnosing Alzheimer's disease (AD) and identifying pathogenic brain regions and genes play a vital role in understanding the AD and developing effective prevention and treatment strategies. Recent works combine imaging and genetic data, an...

Classifying Alzheimer's Disease Using a Finite Basis Physics Neural Network.

Microscopy research and technique
The disease amyloid plaques, neurofibrillary tangles, synaptic dysfunction, and neuronal death gradually accumulate throughout Alzheimer's disease (AD), resulting in cognitive decline and functional disability. The challenges of dataset quality, inte...

Explainable machine learning on clinical features to predict and differentiate Alzheimer's progression by sex: Toward a clinician-tailored web interface.

Journal of the neurological sciences
Alzheimer's disease (AD), the most common neurodegenerative disorder world-wide, presents sex-specific differences in its manifestation and progression, necessitating personalized diagnostic approaches. Current procedures are often costly and invasiv...

MHAGuideNet: a 3D pre-trained guidance model for Alzheimer's Disease diagnosis using 2D multi-planar sMRI images.

BMC medical imaging
BACKGROUND: Alzheimer's Disease is a neurodegenerative condition leading to irreversible and progressive brain damage, with possible features such as structural atrophy. Effective precision diagnosis is crucial for slowing disease progression and red...

Artificial Intelligence-Assisted Comparative Analysis of the Overlapping Molecular Pathophysiology of Alzheimer's Disease, Amyotrophic Lateral Sclerosis, and Frontotemporal Dementia.

International journal of molecular sciences
The overlapping molecular pathophysiology of Alzheimer's Disease (AD), Amyotrophic Lateral Sclerosis (ALS), and Frontotemporal Dementia (FTD) was analyzed using relationships from a knowledge graph of 33+ million biomedical journal articles. The unsu...

DCA-Enhanced Alzheimer's detection with shearlet and deep learning integration.

Computers in biology and medicine
Alzheimer's dementia (AD) is a neurodegenerative disorder that affects the central nervous system, causing the cells to stop working or die. The quality of life for individuals with AD steadily declines over time. While current treatments can relieve...

A machine learning approach for identifying anatomical biomarkers of early mild cognitive impairment.

PeerJ
BACKGROUND: Alzheimer's Disease (AD) poses a major challenge as a neurodegenerative disorder, and early detection is critical for effective intervention. Magnetic resonance imaging (MRI) is a critical tool in AD research due to its availability and c...

Random survival forest model for early prediction of Alzheimer's disease conversion in early and late Mild cognitive impairment stages.

PloS one
With a clinical trial failure rate of 99.6% for Alzheimer's Disease (AD), early diagnosis is critical. Machine learning (ML) models have shown promising results in early AD prediction, with survival ML models outperforming typical classifiers by prov...

Time-Frequency functional connectivity alterations in Alzheimer's disease and frontotemporal dementia: An EEG analysis using machine learning.

Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
OBJECTIVE: Alzheimer's disease (AD) and frontotemporal dementia (FTD) are prevalent neurodegenerative diseases characterized by altered brain functional connectivity (FC), affecting over 100 million people worldwide. This study aims to identify disti...