AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Alzheimer Disease

Showing 191 to 200 of 895 articles

Clear Filters

An efficient ANN SoC for detecting Alzheimer's disease based on recurrent computing.

Computers in biology and medicine
Alzheimer's Disease (AD) is an irreversible, degenerative condition that, while incurable, can have its progression slowed or impeded. While there are numerous methods utilizing neural networks for AD detection, there is a scarcity of High-performanc...

A minimalistic approach to classifying Alzheimer's disease using simple and extremely small convolutional neural networks.

Journal of neuroscience methods
BACKGROUND: There is a broad interest in deploying deep learning-based classification algorithms to identify individuals with Alzheimer's disease (AD) from healthy controls (HC) based on neuroimaging data, such as T1-weighted Magnetic Resonance Imagi...

Machine learning quantification of Amyloid-β deposits in the temporal lobe of 131 brain bank cases.

Acta neuropathologica communications
Accurate and scalable quantification of amyloid-β (Aβ) pathology is crucial for deeper disease phenotyping and furthering research in Alzheimer Disease (AD). This multidisciplinary study addresses the current limitations on neuropathology by leveragi...

Revolutionizing early Alzheimer's disease and mild cognitive impairment diagnosis: a deep learning MRI meta-analysis.

Arquivos de neuro-psiquiatria
BACKGROUND:  The early diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI) remains a significant challenge in neurology, with conventional methods often limited by subjectivity and variability in interpretation. Integrating deep...

Metabolic dysfunctions predict the development of Alzheimer's disease: Statistical and machine learning analysis of EMR data.

Alzheimer's & dementia : the journal of the Alzheimer's Association
INTRODUCTION: The incidence of Alzheimer's disease (AD) and obesity rise concomitantly. This study examined whether factors affecting metabolism, race/ethnicity, and sex are associated with AD development.

Incremental Value of Multidomain Risk Factors for Dementia Prediction: A Machine Learning Approach.

The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry
OBJECTIVE: The current evidence regarding how different predictor domains contributes to predicting incident dementia remains unclear. This study aims to assess the incremental value of five predictor domains when added to a simple dementia risk pred...

TS-AI: A deep learning pipeline for multimodal subject-specific parcellation with task contrasts synthesis.

Medical image analysis
Accurate mapping of brain functional subregions at an individual level is crucial. Task-based functional MRI (tfMRI) captures subject-specific activation patterns during various functions and behaviors, facilitating the individual localization of fun...

A Cascaded Mutliresolution Ensemble Deep Learning Framework for Large Scale Alzheimer's Disease Detection Using Brain MRIs.

IEEE/ACM transactions on computational biology and bioinformatics
Alzheimer's is progressive and irreversible type of dementia, which causes degeneration and death of cells and their connections in the brain. AD worsens over time and greatly impacts patients' life and affects their important mental functions, inclu...

Graph Embedded Ensemble Deep Randomized Network for Diagnosis of Alzheimer's Disease.

IEEE/ACM transactions on computational biology and bioinformatics
Randomized shallow/deep neural networks with closed form solution avoid the shortcomings that exist in the back propagation (BP) based trained neural networks. Ensemble deep random vector functional link (edRVFL) network utilize the strength of two g...

A Multi-Classification Accessment Framework for Reproducible Evaluation of Multimodal Learning in Alzheimer's Disease.

IEEE/ACM transactions on computational biology and bioinformatics
Multimodal learning is widely used in automated early diagnosis of Alzheimer's disease. However, the current studies are based on an assumption that different modalities can provide more complementary information to help classify the samples from the...