AI Medical Compendium Topic:
Alzheimer Disease

Clear Filters Showing 421 to 430 of 897 articles

Neuroinflammation and Alzheimer's Disease: A Machine Learning Approach to CSF Proteomics.

Cells
In Alzheimer's disease (AD), the contribution of pathophysiological mechanisms other than amyloidosis and tauopathy is now widely recognized, although not clearly quantifiable by means of fluid biomarkers. We aimed to identify quantifiable protein bi...

Generation of synthetic PET images of synaptic density and amyloid from F-FDG images using deep learning.

Medical physics
PURPOSE: Positron emission tomography (PET) imaging with various tracers is increasingly used in Alzheimer's disease (AD) studies. However, access to PET scans using new or less-available tracers with sophisticated synthesis and short half-life isoto...

Deep Learning with Neuroimaging and Genomics in Alzheimer's Disease.

International journal of molecular sciences
A growing body of evidence currently proposes that deep learning approaches can serve as an essential cornerstone for the diagnosis and prediction of Alzheimer's disease (AD). In light of the latest advancements in neuroimaging and genomics, numerous...

Recent advances in drug repurposing using machine learning.

Current opinion in chemical biology
Drug repurposing aims to find new uses for already existing and approved drugs. We now provide a brief overview of recent developments in drug repurposing using machine learning alongside other computational approaches for comparison. We also highlig...

Hahn-PCNN-CNN: an end-to-end multi-modal brain medical image fusion framework useful for clinical diagnosis.

BMC medical imaging
BACKGROUND: In medical diagnosis of brain, the role of multi-modal medical image fusion is becoming more prominent. Among them, there is no lack of filtering layered fusion and newly emerging deep learning algorithms. The former has a fast fusion spe...

Use of Deep-Learning Genomics to Discriminate Healthy Individuals from Those with Alzheimer's Disease or Mild Cognitive Impairment.

Behavioural neurology
OBJECTIVES: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and the most common form of dementia in the elderly. Certain genes have been identified as important clinical risk factors for AD, and technological advances in gen...

The Application of Convolutional Neural Network Model in Diagnosis and Nursing of MR Imaging in Alzheimer's Disease.

Interdisciplinary sciences, computational life sciences
The disease Alzheimer is an irrepressible neurologicalbrain disorder. Earlier detection and proper treatment of Alzheimer's disease can help for brain tissue damage prevention. The study was intended to explore the segmentation effects of convolution...

Machine learning compensates fold-change method and highlights oxidative phosphorylation in the brain transcriptome of Alzheimer's disease.

Scientific reports
Alzheimer's disease (AD) is a neurodegenerative disorder causing 70% of dementia cases. However, the mechanism of disease development is still elusive. Despite the availability of a wide range of biological data, a comprehensive understanding of AD's...

Deep learning of resting-state electroencephalogram signals for three-class classification of Alzheimer's disease, mild cognitive impairment and healthy ageing.

Journal of neural engineering
This study aimed to produce a novel deep learning (DL) model for the classification of subjects with Alzheimer's disease (AD), mild cognitive impairment (MCI) subjects and healthy ageing (HA) subjects using resting-state scalp electroencephalogram (E...

Predicting the Prognosis of MCI Patients Using Longitudinal MRI Data.

IEEE/ACM transactions on computational biology and bioinformatics
The aim of this study is to develop a computer-aided diagnosis system with a deep-learning approach for distinguishing "Mild Cognitive Impairment (MCI) due to Alzheimer's Disease (AD)" patients among a list of MCI patients. In this system we are usin...