AIMC Topic: Antineoplastic Agents

Clear Filters Showing 121 to 130 of 491 articles

Docking Score ML: Target-Specific Machine Learning Models Improving Docking-Based Virtual Screening in 155 Targets.

Journal of chemical information and modeling
In drug discovery, molecular docking methods face challenges in accurately predicting energy. Scoring functions used in molecular docking often fail to simulate complex protein-ligand interactions fully and accurately leading to biases and inaccuraci...

Application of Photoactive Compounds in Cancer Theranostics: Review on Recent Trends from Photoactive Chemistry to Artificial Intelligence.

Molecules (Basel, Switzerland)
According to the World Health Organization (WHO) and the International Agency for Research on Cancer (IARC), the number of cancer cases and deaths worldwide is predicted to nearly double by 2030, reaching 21.7 million cases and 13 million fatalities....

Synthesis, Docking, and Machine Learning Studies of Some Novel Quinolinesulfonamides-Triazole Hybrids with Anticancer Activity.

Molecules (Basel, Switzerland)
In the presented work, a series of 22 hybrids of 8-quinolinesulfonamide and 1,4-disubstituted triazole with antiproliferative activity were designed and synthesised. The title compounds were designed using molecular modelling techniques. For this pur...

A high hydrophobic moment arginine-rich peptide screened by a machine learning algorithm enhanced ADC antitumor activity.

Journal of peptide science : an official publication of the European Peptide Society
Cell-penetrating peptides (CPPs) with better biomolecule delivery properties will expand their clinical applications. Using the MLCPP2.0 machine algorithm, we screened multiple candidate sequences with potential cellular uptake ability from the nucle...

mACPpred 2.0: Stacked Deep Learning for Anticancer Peptide Prediction with Integrated Spatial and Probabilistic Feature Representations.

Journal of molecular biology
Anticancer peptides (ACPs), naturally occurring molecules with remarkable potential to target and kill cancer cells. However, identifying ACPs based solely from their primary amino acid sequences remains a major hurdle in immunoinformatics. In the pa...

Deep representation learning of chemical-induced transcriptional profile for phenotype-based drug discovery.

Nature communications
Artificial intelligence transforms drug discovery, with phenotype-based approaches emerging as a promising alternative to target-based methods, overcoming limitations like lack of well-defined targets. While chemical-induced transcriptional profiles ...

From Deep Learning to the Discovery of Promising VEGFR-2 Inhibitors.

ChemMedChem
Vascular endothelial growth factor receptor 2 (VEGFR-2) stands as a prominent therapeutic target in oncology, playing a critical role in angiogenesis, tumor growth, and metastasis. FDA-approved VEGFR-2 inhibitors are associated with diverse side effe...

Artificial intelligence for small molecule anticancer drug discovery.

Expert opinion on drug discovery
INTRODUCTION: The transition from conventional cytotoxic chemotherapy to targeted cancer therapy with small-molecule anticancer drugs has enhanced treatment outcomes. This approach, which now dominates cancer treatment, has its advantages. Despite th...

Harnessing machine learning potential for personalised drug design and overcoming drug resistance.

Journal of drug targeting
Drug resistance in cancer treatment presents a significant challenge, necessitating innovative approaches to improve therapeutic efficacy. Integrating machine learning (ML) in cancer research is promising as ML algorithms outrival in analysing comple...