AIMC Topic: Aortic Valve Stenosis

Clear Filters Showing 11 to 20 of 77 articles

Machine learning for predicting outcomes of transcatheter aortic valve implantation: A systematic review.

International journal of medical informatics
BACKGROUND: Transcatheter aortic valve implantation (TAVI) therapy has demonstrated its clear benefits such as low invasiveness, to treat aortic stenosis. Despite associated benefits, still post-procedural complications might occur. The severity of t...

Artificial intelligence-enhanced comprehensive assessment of the aortic valve stenosis continuum in echocardiography.

EBioMedicine
BACKGROUND: Transthoracic echocardiography (TTE) is the primary modality for diagnosing aortic stenosis (AS), yet it requires skilled operators and can be resource-intensive. We developed and validated an artificial intelligence (AI)-based system for...

Machine-learning versus traditional methods for prediction of all-cause mortality after transcatheter aortic valve implantation: a systematic review and meta-analysis.

Open heart
BACKGROUND: Accurate mortality prediction following transcatheter aortic valve implantation (TAVI) is essential for mitigating risk, shared decision-making and periprocedural planning. Surgical risk models have demonstrated modest discriminative valu...

Identification and validation of the diagnostic biomarker MFAP5 for CAVD with type 2 diabetes by bioinformatics analysis.

Frontiers in immunology
INTRODUCTION: Calcific aortic valve disease (CAVD) is increasingly prevalent among the aging population, and there is a notable lack of drug therapies. Consequently, identifying novel drug targets will be of utmost importance. Given that type 2 diabe...

AI-Powered Multimodal Modeling of Personalized Hemodynamics in Aortic Stenosis.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Aortic stenosis (AS) is the most common valvular heart disease in developed countries. High-fidelity preclinical models can improve AS management by enabling therapeutic innovation, early diagnosis, and tailored treatment planning. However, their use...

Artificial Intelligence Improves Prediction of Major Adverse Cardiovascular Events in Patients Undergoing Transcatheter Aortic Valve Replacement Planning CT.

Academic radiology
RATIONALE AND OBJECTIVES: Coronary CT angiography (CCTA) is mandatory before transcatheter aortic valve replacement (TAVR). Our objective was to evaluate the efficacy of artificial intelligence (AI)-powered software in automatically analyzing cardiac...

Generation of a virtual cohort of TAVI patients for in silico trials: a statistical shape and machine learning analysis.

Medical & biological engineering & computing
PURPOSE: In silico trials using computational modeling and simulations can complement clinical trials to improve the time-to-market of complex cardiovascular devices in humans. This study aims to investigate the significance of synthetic data in deve...

Multi-modality artificial intelligence-based transthyretin amyloid cardiomyopathy detection in patients with severe aortic stenosis.

European journal of nuclear medicine and molecular imaging
PURPOSE: Transthyretin amyloid cardiomyopathy (ATTR-CM) is a frequent concomitant condition in patients with severe aortic stenosis (AS), yet it often remains undetected. This study aims to comprehensively evaluate artificial intelligence-based model...