Background Osteoarthritis affects about 528 million people worldwide, causing pain and stiffness in the joints. Arthroplasty is commonly performed to treat joint osteoarthritis, reducing pain and improving mobility. Nevertheless, a significant share ...
BACKGROUND: The application of machine learning (ML) in predicting the requirement for total knee arthroplasty (TKA) at knee osteoarthritis (KOA) patients has been acknowledged. Nonetheless, the variables employed in the development of ML models are ...
The American journal of sports medicine
Mar 13, 2025
BACKGROUND: Nonoperative and operative management techniques after anterior cruciate ligament (ACL) injury are both appropriate treatment options for selected patients. However, the subsequent development of posttraumatic knee osteoarthritis (PTOA) r...
BACKGROUND: Patient-reported joint instability after total knee arthroplasty (TKA) is difficult to quantify objectively. Here, we apply machine learning to cluster TKA subjects using nine literature-proposed gait parameters as knee instability predic...
BACKGROUND: Periprosthetic joint infection leads to significant morbidity and mortality after total knee arthroplasty. Preoperative and perioperative risk prediction and assessment tools are lacking in Asia. This study developed the first machine lea...
European journal of orthopaedic surgery & traumatology : orthopedie traumatologie
Mar 11, 2025
PURPOSE: Total knee arthroplasty (TKA) is considered the gold standard treatment for end-stage knee osteoarthritis. Common complications associated with TKA include implant loosening and periprosthetic fractures, which often require revision surgery ...
BACKGROUND: Accurate assessment of knee alignment in pre- and post-operative radiographs is crucial for knee arthroplasty planning and evaluation. Current methods rely on manual alignment assessment, which is time-consuming and error-prone. This stud...
BMC medical informatics and decision making
Mar 3, 2025
BACKGROUND: Duration of surgery (DOS) varies substantially for patients with hip and knee arthroplasty (HA/KA) and is a major risk factor for adverse events. We therefore aimed (1) to identify whether machine learning can predict DOS in HA/KA patient...
BACKGROUND: Artificial intelligence (AI) and its subset, machine learning (ML), have significantly impacted clinical medicine, particularly in knee arthroplasty (KA). These technologies utilize algorithms for tasks such as predictive analytics and im...
INTRODUCTION: This study set out to test the efficacy of different techniques used to manage to class imbalance, a type of data bias, in application of a large language model (LLM) to predict patient selection for total knee arthroplasty (TKA).
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.