AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Artifacts

Showing 101 to 110 of 645 articles

Clear Filters

Enhancing quality and speed in database-free neural network reconstructions of undersampled MRI with SCAMPI.

Magnetic resonance in medicine
PURPOSE: We present SCAMPI (Sparsity Constrained Application of deep Magnetic resonance Priors for Image reconstruction), an untrained deep Neural Network for MRI reconstruction without previous training on datasets. It expands the Deep Image Prior a...

The effect of head motion on brain age prediction using deep convolutional neural networks.

NeuroImage
Deep learning can be used effectively to predict participants' age from brain magnetic resonance imaging (MRI) data, and a growing body of evidence suggests that the difference between predicted and chronological age-referred to as brain-predicted ag...

Frequency and phase correction of GABA-edited magnetic resonance spectroscopy using complex-valued convolutional neural networks.

Magnetic resonance imaging
PURPOSE: To determine the significance of complex-valued inputs and complex-valued convolutions compared to real-valued inputs and real-valued convolutions in convolutional neural networks (CNNs) for frequency and phase correction (FPC) of GABA-edite...

Accelerated Diffusion-Weighted Magnetic Resonance Imaging of the Liver at 1.5 T With Deep Learning-Based Image Reconstruction: Impact on Image Quality and Lesion Detection.

Journal of computer assisted tomography
OBJECTIVE: To perform image quality comparison between deep learning-based multiband diffusion-weighted sequence (DL-mb-DWI), accelerated multiband diffusion-weighted sequence (accelerated mb-DWI), and conventional multiband diffusion-weighted sequen...

A machine learning algorithm for detecting abnormal patterns in continuous capnography and pulse oximetry monitoring.

Journal of clinical monitoring and computing
Continuous capnography monitors patient ventilation but can be susceptible to artifact, resulting in alarm fatigue. Development of smart algorithms may facilitate accurate detection of abnormal ventilation, allowing intervention before patient deteri...

DeepFLAIR: A neural network approach to mitigate signal and contrast loss in temporal lobes at 7 Tesla FLAIR images.

Magnetic resonance imaging
BACKGROUND AND PURPOSE: Higher magnetic field strength introduces stronger magnetic field inhomogeneities in the brain, especially within temporal lobes, leading to image artifacts. Particularly, T2-weighted fluid-attenuated inversion recovery (FLAIR...

Deep learning denoising reconstruction enables faster T2-weighted FLAIR sequence acquisition with satisfactory image quality.

Journal of medical imaging and radiation oncology
INTRODUCTION: Deep learning reconstruction (DLR) technologies are the latest methods attempting to solve the enduring problem of reducing MRI acquisition times without compromising image quality. The clinical utility of this reconstruction technique ...

Machine learning based analysis and detection of trend outliers for electromyographic neuromuscular monitoring.

Journal of clinical monitoring and computing
PURPOSE: Neuromuscular monitoring is frequently plagued by artefacts, which along with the frequent unawareness of the principles of this subtype of monitoring by many clinicians, tends to lead to a cynical attitute by clinicians towards these monito...

Deep learning-based rapid image reconstruction and motion correction for high-resolution cartesian first-pass myocardial perfusion imaging at 3T.

Magnetic resonance in medicine
PURPOSE: To develop and evaluate a deep learning (DL) -based rapid image reconstruction and motion correction technique for high-resolution Cartesian first-pass myocardial perfusion imaging at 3T with whole-heart coverage for both single-slice (SS) a...

AcquisitionFocus: Joint Optimization of Acquisition Orientation and Cardiac Volume Reconstruction Using Deep Learning.

Sensors (Basel, Switzerland)
In cardiac cine imaging, acquiring high-quality data is challenging and time-consuming due to the artifacts generated by the heart's continuous movement. Volumetric, fully isotropic data acquisition with high temporal resolution is, to date, intracta...