AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Atrial Fibrillation

Showing 71 to 80 of 304 articles

Clear Filters

Higher-Order Spectral Analysis Combined with a Convolution Neural Network for Atrial Fibrillation Detection-Preliminary Study.

Sensors (Basel, Switzerland)
The global burden of atrial fibrillation (AFIB) is constantly increasing, and its early detection is still a challenge for public health and motivates researchers to improve methods for automatic AFIB prediction and management. This work proposes hig...

Artificial Intelligence-Based Atrial Fibrillation Recognition Method for Motion Artifact-Contaminated Electrocardiogram Signals Preprocessed by Adaptive Filtering Algorithm.

Sensors (Basel, Switzerland)
Atrial fibrillation (AF) is a common arrhythmia, and out-of-hospital, wearable, long-term electrocardiogram (ECG) monitoring can help with the early detection of AF. The presence of a motion artifact (MA) in ECG can significantly affect the character...

Precise risk-prediction model including arterial stiffness for new-onset atrial fibrillation using machine learning techniques.

Journal of clinical hypertension (Greenwich, Conn.)
Atrial fibrillation (AF) is the most common clinically significant cardiac arrhythmia and is an important risk factor for ischemic cerebrovascular events. This study used machine learning techniques to develop and validate a new risk prediction model...

xECGArch: a trustworthy deep learning architecture for interpretable ECG analysis considering short-term and long-term features.

Scientific reports
Deep learning-based methods have demonstrated high classification performance in the detection of cardiovascular diseases from electrocardiograms (ECGs). However, their blackbox character and the associated lack of interpretability limit their clinic...

Machine Learning of Cardiac Anatomy and the Risk of New-Onset Atrial Fibrillation After TAVR.

JACC. Clinical electrophysiology
BACKGROUND: New-onset atrial fibrillation (NOAF) occurs in 5% to 15% of patients who undergo transfemoral transcatheter aortic valve replacement (TAVR). Cardiac imaging has been underutilized to predict NOAF following TAVR.

Oral anticoagulant treatment in atrial fibrillation: the AFIRMA real-world study using natural language processing and machine learning.

Revista clinica espanola
INTRODUCTION: Oral anticoagulation (OAC) is key in atrial fibrillation (AF) thromboprophylaxis, but Spain lacks substantial real-world evidence. We aimed to analyze the prevalence, clinical characteristics, and treatment patterns among patients with ...

Pleiotropic Effects of Direct Oral Anticoagulants in Chronic Heart Failure and Atrial Fibrillation: Machine Learning Analysis.

Molecules (Basel, Switzerland)
Oral anticoagulant therapy (OAT) for managing atrial fibrillation (AF) encompasses vitamin K antagonists (VKAs, such as warfarin), which was the mainstay of anticoagulation therapy before 2010, and direct-acting oral anticoagulants (DOACs, namely dab...

Multiscale dilated convolutional neural network for Atrial Fibrillation detection.

PloS one
Atrial Fibrillation (AF), a type of heart arrhythmia, becomes more common with aging and is associated with an increased risk of stroke and mortality. In light of the urgent need for effective automated AF monitoring, existing methods often fall shor...

Deep learning of left atrial structure and function provides link to atrial fibrillation risk.

Nature communications
Increased left atrial volume and decreased left atrial function have long been associated with atrial fibrillation. The availability of large-scale cardiac magnetic resonance imaging data paired with genetic data provides a unique opportunity to asse...

Detection of Non-Sustained Supraventricular Tachycardia in Atrial Fibrillation Screening.

IEEE journal of translational engineering in health and medicine
OBJECTIVE: Non-sustained supraventricular tachycardia (nsSVT) is associated with a higher risk of developing atrial fibrillation (AF), and, therefore, detection of nsSVT can improve AF screening efficiency. However, the detection is challenged by the...