AIMC Topic: Blood Glucose Self-Monitoring

Clear Filters Showing 21 to 30 of 82 articles

Insertable Glucose Sensor Using a Compact and Cost-Effective Phosphorescence Lifetime Imager and Machine Learning.

ACS nano
Optical continuous glucose monitoring (CGM) systems are emerging for personalized glucose management owing to their lower cost and prolonged durability compared to conventional electrochemical CGMs. Here, we report a computational CGM system, which i...

Development and Validation of a Machine Learning Model to Predict Weekly Risk of Hypoglycemia in Patients with Type 1 Diabetes Based on Continuous Glucose Monitoring.

Diabetes technology & therapeutics
The aim of this study was to develop and validate a prediction model based on continuous glucose monitoring (CGM) data to identify a week-to-week risk profile of excessive hypoglycemia. We analyzed, trained, and internally tested two prediction mod...

DDLA: a double deep latent autoencoder for diabetic retinopathy diagnose based on continuous glucose sensors.

Medical & biological engineering & computing
The current diagnosis of diabetic retinopathy is based on fundus images and clinical experience. However, considering the ineffectiveness and non-portability of medical devices, we aimed to develop a diagnostic model for diabetic retinopathy based on...

Physical Activity Detection for Diabetes Mellitus Patients Using Recurrent Neural Networks.

Sensors (Basel, Switzerland)
Diabetes mellitus (DM) is a persistent metabolic disorder associated with the hormone insulin. The two main types of DM are type 1 (T1DM) and type 2 (T2DM). Physical activity plays a crucial role in the therapy of diabetes, benefiting both types of p...

Population-Specific Glucose Prediction in Diabetes Care With Transformer-Based Deep Learning on the Edge.

IEEE transactions on biomedical circuits and systems
Leveraging continuous glucose monitoring (CGM) systems, real-time blood glucose (BG) forecasting is essential for proactive interventions, playing a crucial role in enhancing the management of type 1 diabetes (T1D) and type 2 diabetes (T2D). However,...

Development of Machine Learning Models for the Identification of Elevated Ketone Bodies During Hyperglycemia in Patients with Type 1 Diabetes.

Diabetes technology & therapeutics
Diabetic ketoacidosis (DKA) is a serious life-threatening condition caused by a lack of insulin, which leads to elevated plasma glucose and metabolic acidosis. Early identification of developing DKA is important to start treatment and minimize compl...

Machine Learning Method and Hyperspectral Imaging for Precise Determination of Glucose and Silicon Levels.

Sensors (Basel, Switzerland)
This article introduces an algorithm for detecting glucose and silicon levels in solution. The research focuses on addressing the critical need for accurate and efficient glucose monitoring, particularly in the context of diabetic management. Underst...

A deep learning nomogram of continuous glucose monitoring data for the risk prediction of diabetic retinopathy in type 2 diabetes.

Physical and engineering sciences in medicine
Continuous glucose monitoring (CGM) data analysis will provide a new perspective to analyze factors related to diabetic retinopathy (DR). However, the problem of visualizing CGM data and automatically predicting the incidence of DR from CGM is still ...

Estimation of a Machine Learning-Based Decision Rule to Reduce Hypoglycemia Among Older Adults With Type 1 Diabetes: A Post Hoc Analysis of Continuous Glucose Monitoring in the WISDM Study.

Journal of diabetes science and technology
BACKGROUND: The Wireless Innovation for Seniors with Diabetes Mellitus (WISDM) study demonstrated continuous glucose monitoring (CGM) reduced hypoglycemia over 6 months among older adults with type 1 diabetes (T1D) compared with blood glucose monitor...

A Prediction Algorithm for Hypoglycemia Based on Support Vector Machine Using Glucose Level and Electrocardiogram.

Journal of medical systems
A prediction algorithm for hypoglycemic events is proposed using glucose levels and electrocardiogram (ECG) with support vector machine (SVM). We extracted the corrected QT interval and five heart rate variability parameters from the ECG, along with ...