AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Breast Neoplasms

Showing 111 to 120 of 2031 articles

Clear Filters

Diagnosis of Benign and Malignant Newly Developed Nodules on the Surgical Side After Breast Cancer Surgery Based on Machine Learning.

The breast journal
To enhance the diagnostic accuracy of new nodules on the surgical side after breast cancer surgery using machine learning techniques and to explore the role of multifeature fusion. Data from 137 breast cancer postoperative patients with new nodules...

Artificial intelligence can extract important features for diagnosing axillary lymph node metastasis in early breast cancer using contrast-enhanced ultrasonography.

Scientific reports
Contrast-enhanced ultrasound (CEUS) plays a pivotal role in the diagnosis of primary breast cancer and in axillary lymph node (ALN) metastasis. However, the imaging features that are clinically crucial for lymph node metastasis have not been fully el...

Deep transfer learning based hierarchical CAD system designs for SFM images.

Journal of medical engineering & technology
Present work involves rigorous experimentation for classification of mammographic masses by employing four deep transfer learning models using hierarchical framework. Experimental work is carried on 518 SFM images of DDSM dataset with 208, 150 and 16...

Predicting cancer survival at different stages: Insights from fair and explainable machine learning approaches.

International journal of medical informatics
OBJECTIVES: While prior machine learning (ML) models for cancer survivability prediction often treated all cancer stages uniformly, cancer survivability prediction should involve understanding how different stages impact the outcomes. Additionally, t...

Use of machine learning algorithms to construct models of symptom burden cluster risk in breast cancer patients undergoing chemotherapy.

Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer
PURPOSE: To develop models using different machine learning algorithms to predict high-risk symptom burden clusters in breast cancer patients undergoing chemotherapy, and to determine an optimal model.

Reliability-enhanced data cleaning in biomedical machine learning using inductive conformal prediction.

PLoS computational biology
Accurately labeling large datasets is important for biomedical machine learning yet challenging while modern data augmentation methods may generate noise in the training data, which may deteriorate machine learning model performance. Existing approac...

Image quality and diagnostic performance of deep learning reconstruction for diffusion- weighted imaging in 3 T breast MRI.

European journal of radiology
PURPOSE: This study aimed to assess the image quality and the diagnostic value of deep learning reconstruction (DLR) for diffusion-weighted imaging (DWI) compared with conventional single-shot echo-planar imaging (ss-EPI) in 3 T breast MRI.

Comparative analysis of machine learning models for predicting pathological complete response to neoadjuvant chemotherapy in breast cancer: An MRI radiomics approach.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: The aim of this work is to compare different machine learning models for predicting pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer using radiomics features from dynamic contrast-enhanced magnetic reso...

Detection of metastatic breast carcinoma in sentinel lymph node frozen sections using an artificial intelligence-assisted system.

Pathology, research and practice
We developed an automatic method based on a convolutional neural network (CNN) that identifies metastatic lesions in whole slide images (WSI) of intraoperative frozen sections from sentinel lymph nodes in breast cancer. A total of 954 sentinel lymph ...

Multi-modality medical image classification with ResoMergeNet for cataract, lung cancer, and breast cancer diagnosis.

Computers in biology and medicine
The variability in image modalities presents significant challenges in medical image classification, as traditional deep learning models often struggle to adapt to different image types, leading to suboptimal performance across diverse datasets. This...