AIMC Topic: Coloring Agents

Clear Filters Showing 1 to 10 of 92 articles

DFT and machine learning integration to predict efficiency of modified metal-free dyes in DSSCs.

Journal of molecular graphics & modelling
Power conversion efficiency (PCE) prediction in dye-sensitized solar cells (DSSCs) increasingly relies on computation and machine learning, lowering experimental demands and accelerating materials discovery. In this work we incorporated quantum-chemi...

Machine learning-assisted prediction of engineered carbon systems' capacity to treat textile dyeing wastewater via adsorption technology.

Environmental monitoring and assessment
Dyes are widely used in industries like printing, cosmetics, paper, leather processing, textiles, and manufacturing to add color to products. However, improper disposal of dyes into wastewater has raised major concerns due to their harmful effects on...

An exploration of RSM, ANN, and ANFIS models for methylene blue dye adsorption using Oryza sativa straw biomass: a comparative approach.

Scientific reports
This study focused on simulating the adsorption-based separation of Methylene Blue (MB) dye utilising Oryza sativa straw biomass (OSSB). Three distinct modelling approaches were employed: artificial neural networks (ANN), adaptive neuro-fuzzy inferen...

Deep eutectic solvent-modified polyvinyl alcohol/chitosan thin film membrane for dye adsorption: Machine learning modeling, experimental, and density functional theory calculations.

International journal of biological macromolecules
The polyvinyl alcohol/chitosan (PVA/CS) thin film membrane was modified using a deep eutectic solvent (DES) to enhance its adsorption capability and mechanical strength for the removal of brilliant green (BG) dye. Batch adsorption experiments, machin...

Development of Deep Learning-Based Virtual Lugol Chromoendoscopy for Superficial Esophageal Squamous Cell Carcinoma.

Journal of gastroenterology and hepatology
BACKGROUND: Lugol chromoendoscopy has been shown to increase the sensitivity of detection of esophageal squamous cell carcinoma (ESCC). We aimed to develop a deep learning-based virtual lugol chromoendoscopy (V-LCE) method.

Machine learning-assisted SERS sensor for fast and ultrasensitive analysis of multiplex hazardous dyes in natural products.

Journal of hazardous materials
The adulteration of natural products with multiple azo dyes has become a serious public health concern. Thus, on-site trace additive detection is demanded. Herein, we developed a gold-nanorod-based surface-enhanced Raman scattering (SERS) sensor to d...

Deep Learning Segmentation of Chromogenic Dye RNAscope From Breast Cancer Tissue.

Journal of imaging informatics in medicine
RNAscope staining of breast cancer tissue allows pathologists to deduce genetic characteristics of the cancer by inspection at the microscopic level, which can lead to better diagnosis and treatment. Chromogenic RNAscope staining is easy to fit into ...

Machine learning based-model to predict catalytic performance on removal of hazardous nitrophenols and azo dyes pollutants from wastewater.

International journal of biological macromolecules
To maintain human health and purity of drinking water, it is crucial to eliminate harmful chemicals such as nitrophenols and azo dyes, considering their natural presence in the surroundings. In this particular research study, the application of machi...

Virtual indigo carmine chromoendoscopy images: a novel modality for peroral cholangioscopy using artificial intelligence technology (with video).

Gastrointestinal endoscopy
BACKGROUND AND AIMS: Accurately diagnosing biliary strictures is crucial for surgical decisions, and although peroral cholangioscopy (POCS) aids in visual diagnosis, diagnosing malignancies or determining lesion margins via this route remains challen...

Unsupervised stain augmentation enhanced glomerular instance segmentation on pathology images.

International journal of computer assisted radiology and surgery
PURPOSE: In pathology images, different stains highlight different glomerular structures, so a supervised deep learning-based glomerular instance segmentation model trained on individual stains performs poorly on other stains. However, it is difficul...