AIMC Topic: Computed Tomography Angiography

Clear Filters Showing 101 to 110 of 450 articles

Machine Learning Based Prediction of Post-operative Infrarenal Endograft Apposition for Abdominal Aortic Aneurysms.

European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery
OBJECTIVE: Challenging infrarenal aortic neck characteristics have been associated with an increased risk of type Ia endoleak after endovascular aneurysm repair (EVAR). Short apposition (< 10 mm circumferential shortest apposition length [SAL]) on th...

Modeling of valve-in-valve transcatheter aortic valve implantation after aortic root replacement using a 3-dimensional artificial intelligence algorithm.

The Journal of thoracic and cardiovascular surgery
OBJECTIVE: Aortic root replacement requires construction of a composite valve-graft and reimplantation of coronary arteries. This study assessed the feasibility of valve-in-valve transcatheter aortic valve implantation after aortic root replacement.

nnU-Net-based deep-learning for pulmonary embolism: detection, clot volume quantification, and severity correlation in the RSPECT dataset.

European journal of radiology
OBJECTIVES: CT pulmonary angiography is the gold standard for diagnosing pulmonary embolism, and DL algorithms are being developed to manage the increase in demand. The nnU-Net is a new auto-adaptive DL framework that minimizes manual tuning, making ...

Improved vascular depiction and image quality through deep learning reconstruction of CT hepatic arteriography during transcatheter arterial chemoembolization.

Japanese journal of radiology
PURPOSE: To evaluate the effect of deep learning reconstruction (DLR) on vascular depiction, tumor enhancement, and image quality of computed tomography hepatic arteriography (CTHA) images acquired during transcatheter arterial chemoembolization (TAC...

Machine Learning Detects Symptomatic Plaques in Patients With Carotid Atherosclerosis on CT Angiography.

Circulation. Cardiovascular imaging
BACKGROUND: This study aimed to develop and validate a computed tomography angiography based machine learning model that uses plaque composition data and degree of carotid stenosis to detect symptomatic carotid plaques in patients with carotid athero...

Explainable deep-learning-based ischemia detection using hybrid O-15 HO perfusion positron emission tomography and computed tomography imaging with clinical data.

Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology
BACKGROUND: We developed an explainable deep-learning (DL)-based classifier to identify flow-limiting coronary artery disease (CAD) by O-15 HO perfusion positron emission tomography computed tomography (PET/CT) and coronary CT angiography (CTA) imagi...