AIMC Topic: Carotid Stenosis

Clear Filters Showing 1 to 10 of 41 articles

Combining artificial intelligence assisted image segmentation and ultrasound based radiomics for the prediction of carotid plaque stability.

BMC medical imaging
PURPOSE: Utilizing artificial intelligence (AI) technology for the segmentation of plaques on ultrasound images to evaluate the stability of carotid artery plaques and analyze its diagnostic accuracy in differentiating vulnerable plaques from stable ...

Real time artificial intelligence assisted carotid artery stenting: a preliminary experience.

Journal of neurointerventional surgery
BACKGROUND: Neurointerventionalists must pay close attention to multiple devices on multiple screens simultaneously, which can lead to oversights and complications. Artificial intelligence (AI) has potential application in recognizing and monitoring ...

Varying pixel resolution significantly improves deep learning-based carotid plaque histology segmentation.

Scientific reports
Carotid plaques-the buildup of cholesterol, calcium, cellular debris, and fibrous tissues in carotid arteries-can rupture, release microemboli into the cerebral vasculature and cause strokes. The likelihood of a plaque rupturing is thought to be asso...

Predictive Factors Driving Positive Awake Test in Carotid Endarterectomy Using Machine Learning.

Annals of vascular surgery
BACKGROUND: Positive neurologic awake testing during the carotid cross-clamping may be present in around 8% of patients undergoing carotid endarterectomy (CEA). The present work aimed to assess the accuracy of an artificial intelligence (AI)-powered ...

Advancing Vascular Surgery: The Role Of Artificial Intelligence And Machine Learning In Managing Carotid Stenosis.

Portuguese journal of cardiac thoracic and vascular surgery
INTRODUCTION: Cardiovascular diseases affect 17.7 million people annually, worldwide. Carotid degenerative disease, commonly described as atherosclerotic plaque accumulation, significantly contributes to this, posing a risk for cerebrovascular events...

Determination of spectroscopy marker of atherosclerotic carotid stenosis using FTIR-ATR combined with machine learning and chemometrics analyses.

Nanomedicine : nanotechnology, biology, and medicine
Atherosclerotic carotid stenosis (ACS) is a recognized risk factor for ischemic stroke. Currently, the gold diagnostic standard is Doppler ultrasound, the results of which do not provide certainty whether a given person should be qualified for surger...

Raman spectroscopy combined with machine learning and chemometrics analyses as a tool for identification atherosclerotic carotid stenosis from serum.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
Atherosclerosis carotid stenosis (ACS) is one of the main causes of stroke. Unfortunately, the highest number of people go to the doctor with an advanced disease or as a result of a stroke, because carotid atherosclerosis does not cause obvious sympt...

Using Machine Learning to Predict Outcomes Following Transfemoral Carotid Artery Stenting.

Journal of the American Heart Association
BACKGROUND: Transfemoral carotid artery stenting (TFCAS) carries important perioperative risks. Outcome prediction tools may help guide clinical decision-making but remain limited. We developed machine learning algorithms that predict 1-year stroke o...

Image Quality Assessment of a Deep Learning-Based Automatic Bone Removal Algorithm for Cervical CTA.

Journal of computer assisted tomography
BACKGROUND: The present study aims to evaluate the postprocessing image quality of a deep-learning (DL)-based automatic bone removal algorithm in the real clinical practice for cervical computed tomography angiography (CTA).

Machine Learning Detects Symptomatic Plaques in Patients With Carotid Atherosclerosis on CT Angiography.

Circulation. Cardiovascular imaging
BACKGROUND: This study aimed to develop and validate a computed tomography angiography based machine learning model that uses plaque composition data and degree of carotid stenosis to detect symptomatic carotid plaques in patients with carotid athero...